Warming-induced changes of broccoli head to cauliflower-like curd in Brassica oleracea are regulated by DNA methylation as revealed by methylome and transcriptome co-profiling.
Zilei Yao, Lu Yuan, Ke Liu, Tingjin Wang, Bin Liu, Yan Zhao, Susheng Gan, Liping Chen
{"title":"Warming-induced changes of broccoli head to cauliflower-like curd in Brassica oleracea are regulated by DNA methylation as revealed by methylome and transcriptome co-profiling.","authors":"Zilei Yao, Lu Yuan, Ke Liu, Tingjin Wang, Bin Liu, Yan Zhao, Susheng Gan, Liping Chen","doi":"10.1186/s43897-022-00047-8","DOIUrl":null,"url":null,"abstract":"<p><p>Increasingly warming temperature impacts on all aspects of growth and development in plants. Flower development is a complex process that is very sensitive to ambient temperature, and warming temperatures often lead to abnormal flower development and remarkably reduce the quality and yield of inflorescent vegetables and many other crops, which can be exemplified by Brassica oleracea cv. Green Harmony F1, a broccoli cultivar, whose floral development is ceased at inflorescence meristem (at 28 °C) or floral primordium stage (at 22 °C), forming a cauliflower-like curd (28 °C) or intermediate curd (22 °C) instead of normal broccoli head at 16 °C. However, the underlying molecular regulatory mechanisms are not well understood. Here we report that warming temperature (28 °C or 22 °C) induced hypermethylation of the genome, especially the promoter regions of such sets of genes as ribosome biogenesis-related and others, leading to the suppression of the apex-highly-expressed distinctive genes, subsequently resulting in the abnormal floral development, as revealed by methylome and transcriptome co-profiling. The regulation of warming-induced abnormal floral development in broccoli was further verified by the fact that the DNA methylation inhibitor 5-azacytidine (5-azaC) released the expression of genes from the warming temperature-induced suppression, and restored the broccoli development to normalcy at warming temperature. The research provided new approaches to breeding broccoli and other crops for growing in wider or warmer temperature zones. Graphical Abstract.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515005/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-022-00047-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 1
Abstract
Increasingly warming temperature impacts on all aspects of growth and development in plants. Flower development is a complex process that is very sensitive to ambient temperature, and warming temperatures often lead to abnormal flower development and remarkably reduce the quality and yield of inflorescent vegetables and many other crops, which can be exemplified by Brassica oleracea cv. Green Harmony F1, a broccoli cultivar, whose floral development is ceased at inflorescence meristem (at 28 °C) or floral primordium stage (at 22 °C), forming a cauliflower-like curd (28 °C) or intermediate curd (22 °C) instead of normal broccoli head at 16 °C. However, the underlying molecular regulatory mechanisms are not well understood. Here we report that warming temperature (28 °C or 22 °C) induced hypermethylation of the genome, especially the promoter regions of such sets of genes as ribosome biogenesis-related and others, leading to the suppression of the apex-highly-expressed distinctive genes, subsequently resulting in the abnormal floral development, as revealed by methylome and transcriptome co-profiling. The regulation of warming-induced abnormal floral development in broccoli was further verified by the fact that the DNA methylation inhibitor 5-azacytidine (5-azaC) released the expression of genes from the warming temperature-induced suppression, and restored the broccoli development to normalcy at warming temperature. The research provided new approaches to breeding broccoli and other crops for growing in wider or warmer temperature zones. Graphical Abstract.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.