{"title":"Antimicrobial effect of hydro-alcoholic extract of apple with and without zinc oxide nanoparticles on <i>Streptococcus Mutans</i>.","authors":"Maryam Mehrabkhani, Taraneh Movahhed, Mohsen Arefnezhad, Shokouhsadat Hamedi, Farnaz Faramarzian","doi":"10.4081/ejtm.2023.11623","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the antimicrobial effect of hydro-alcoholic extract of apple (Malus domestica Borkh. Vs.golab, with and without ZnO nanoparticles) on Streptococcus Mutans bacterium compared to 0.2% Chlorhexidine, Persica and suspension of ZnO nanoparticles. Study samples were examined in the groups of apple hydro-alcoholic extract with and without addition of ZnO nanoparticles, a positive control group (Chlorhexidine 0.2%, Persica and suspension of ZnO nanoparticles), and a negative control group (distilled water). In this experiment, a concentration of 500 PPM of ZnO nanoparticles with a diameter of 0.4 nm was used. Agar diffusion method was used to determine the Minimum Inhibitory Concentration (MIC) of apple hydro-alcoholic extract with and without adding ZnO nanoparticles. The concentrations used were 200, 100, 50 and 25 mg/ml. ANOVA statistical test was used to compare the average in the study groups. According to our results, hydro-alcoholic extract of apples alone had no effect on the target bacteria in any of the concentrations. In the group of apple hydro-alcoholic extract with ZnO nanoparticles, the mean inhibition zone was 13 mm at a concentration of 25 mg/ml. 0.2% Chlorhexidine, Persica and suspension of ZnO nanoparticles was observed with the mean inhibition zone of 20 mm, 16 mm and 15 mm, respectively. Hydro-alcoholic extract of apple with addition of ZnO nanoparticles in concentration of 25mg/ml, had growth inhibitory effect on Streptococcus Mutans, but it was not remarkably efficient in comparison with Chlorhexidine.</p>","PeriodicalId":46459,"journal":{"name":"European Journal of Translational Myology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Translational Myology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ejtm.2023.11623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the antimicrobial effect of hydro-alcoholic extract of apple (Malus domestica Borkh. Vs.golab, with and without ZnO nanoparticles) on Streptococcus Mutans bacterium compared to 0.2% Chlorhexidine, Persica and suspension of ZnO nanoparticles. Study samples were examined in the groups of apple hydro-alcoholic extract with and without addition of ZnO nanoparticles, a positive control group (Chlorhexidine 0.2%, Persica and suspension of ZnO nanoparticles), and a negative control group (distilled water). In this experiment, a concentration of 500 PPM of ZnO nanoparticles with a diameter of 0.4 nm was used. Agar diffusion method was used to determine the Minimum Inhibitory Concentration (MIC) of apple hydro-alcoholic extract with and without adding ZnO nanoparticles. The concentrations used were 200, 100, 50 and 25 mg/ml. ANOVA statistical test was used to compare the average in the study groups. According to our results, hydro-alcoholic extract of apples alone had no effect on the target bacteria in any of the concentrations. In the group of apple hydro-alcoholic extract with ZnO nanoparticles, the mean inhibition zone was 13 mm at a concentration of 25 mg/ml. 0.2% Chlorhexidine, Persica and suspension of ZnO nanoparticles was observed with the mean inhibition zone of 20 mm, 16 mm and 15 mm, respectively. Hydro-alcoholic extract of apple with addition of ZnO nanoparticles in concentration of 25mg/ml, had growth inhibitory effect on Streptococcus Mutans, but it was not remarkably efficient in comparison with Chlorhexidine.