Predictive capabilities of baseline radiological findings for early and late disease outcomes within sensitive and multi-drug resistant tuberculosis cases

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2023-09-27 DOI:10.1016/j.ejro.2023.100518
Gabriel Rosenfeld, Andrei Gabrielian, Darrell Hurt, Alex Rosenthal
{"title":"Predictive capabilities of baseline radiological findings for early and late disease outcomes within sensitive and multi-drug resistant tuberculosis cases","authors":"Gabriel Rosenfeld,&nbsp;Andrei Gabrielian,&nbsp;Darrell Hurt,&nbsp;Alex Rosenthal","doi":"10.1016/j.ejro.2023.100518","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>This study compares performance of Timika Score to standardized, detailed radiologist observations of Chest X rays (CXR) for predicting early infectiousness and subsequent treatment outcome in drug sensitive (DS) or multi-drug resistant (MDR) tuberculosis cases. It seeks improvement in prediction of these clinical events through these additional observations.</p></div><div><h3>Method</h3><p>This is a retrospective study analyzing cases from the NIH/NIAID supported TB Portals database, a large, trans-national, multi-site cohort of primarily drug-resistant tuberculosis patients. We analyzed patient records with sputum microscopy readings, radiologist annotated CXR, and treatment outcome including a matching step on important covariates of age, gender, HIV status, case definition, Body Mass Index (BMI), smoking, drug use, and Timika Score across resistance type for comparison.</p></div><div><h3>Results</h3><p>2142 patients with tuberculosis infection (374 with poor outcome and 1768 with good treatment outcome) were retrospectively reviewed. Bayesian ANOVA demonstrates radiologist observations did not show greater predictive ability for baseline infectiousness (0.77 and 0.74 probability in DS and MDR respectively); however, the observations provided superior prediction of treatment outcome (0.84 and 0.63 probability in DS and MDR respectively). Estimated lung abnormal area and cavity were identified as important predictors underlying the Timika Score’s performance.</p></div><div><h3>Conclusions</h3><p>Timika Score simplifies the usage of baseline CXR for prediction of early infectiousness of the case and shows comparable performance to using detailed, standardized radiologist observations. The score’s utility diminishes for treatment outcome prediction and is exceeded by the usage of the detailed observations although prediction performance on treatment outcome decreases especially in MDR TB cases.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/18/main.PMC10556559.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047723000448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study compares performance of Timika Score to standardized, detailed radiologist observations of Chest X rays (CXR) for predicting early infectiousness and subsequent treatment outcome in drug sensitive (DS) or multi-drug resistant (MDR) tuberculosis cases. It seeks improvement in prediction of these clinical events through these additional observations.

Method

This is a retrospective study analyzing cases from the NIH/NIAID supported TB Portals database, a large, trans-national, multi-site cohort of primarily drug-resistant tuberculosis patients. We analyzed patient records with sputum microscopy readings, radiologist annotated CXR, and treatment outcome including a matching step on important covariates of age, gender, HIV status, case definition, Body Mass Index (BMI), smoking, drug use, and Timika Score across resistance type for comparison.

Results

2142 patients with tuberculosis infection (374 with poor outcome and 1768 with good treatment outcome) were retrospectively reviewed. Bayesian ANOVA demonstrates radiologist observations did not show greater predictive ability for baseline infectiousness (0.77 and 0.74 probability in DS and MDR respectively); however, the observations provided superior prediction of treatment outcome (0.84 and 0.63 probability in DS and MDR respectively). Estimated lung abnormal area and cavity were identified as important predictors underlying the Timika Score’s performance.

Conclusions

Timika Score simplifies the usage of baseline CXR for prediction of early infectiousness of the case and shows comparable performance to using detailed, standardized radiologist observations. The score’s utility diminishes for treatment outcome prediction and is exceeded by the usage of the detailed observations although prediction performance on treatment outcome decreases especially in MDR TB cases.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在敏感和耐多药结核病病例中,基线放射学检查结果对早期和晚期疾病结果的预测能力。
目的:本研究将Timika评分与胸部X射线(CXR)的标准化、详细放射科医生观察结果进行比较,以预测药物敏感(DS)或耐多药(MDR)结核病病例的早期传染性和后续治疗结果。它寻求通过这些额外的观察来改进对这些临床事件的预测。方法:这是一项回顾性研究,分析来自NIH/NIAID支持的结核病门户数据库的病例,该数据库是一个由主要耐药结核病患者组成的大型、跨国家、多站点队列。我们分析了患者记录,包括痰液显微镜读数、放射科医生注释的CXR和治疗结果,包括年龄、性别、HIV状态、病例定义、体重指数(BMI)、吸烟、药物使用和不同耐药类型的Timika评分的重要协变量的匹配步骤,以进行比较。结果:对2142例肺结核感染患者(374例疗效不佳,1768例疗效良好)进行了回顾性分析。贝叶斯方差分析表明,放射科医生的观察结果对基线传染性没有显示出更大的预测能力(DS和MDR的概率分别为0.77和0.74);然而,这些观察结果提供了更好的治疗结果预测(DS和MDR的概率分别为0.84和0.63)。估计的肺部异常面积和空洞被确定为Timika评分表现的重要预测因素。结论:Timika评分简化了基线CXR预测病例早期传染性的使用,并显示出与使用详细、标准化放射科医生观察结果相当的性能。尽管对治疗结果的预测性能下降,尤其是在耐多药结核病病例中,但该评分在治疗结果预测中的效用降低,并且被详细观察的使用所超过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1