The NAC transcription factor MdNAC4 positively regulates nitrogen deficiency-induced leaf senescence by enhancing ABA biosynthesis in apple.

IF 10.6 Q1 HORTICULTURE Molecular Horticulture Pub Date : 2023-03-10 DOI:10.1186/s43897-023-00053-4
Binbin Wen, Xuehui Zhao, Xingyao Gong, Wenzhe Zhao, Mingyue Sun, Xiude Chen, Dongmei Li, Ling Li, Wei Xiao
{"title":"The NAC transcription factor MdNAC4 positively regulates nitrogen deficiency-induced leaf senescence by enhancing ABA biosynthesis in apple.","authors":"Binbin Wen, Xuehui Zhao, Xingyao Gong, Wenzhe Zhao, Mingyue Sun, Xiude Chen, Dongmei Li, Ling Li, Wei Xiao","doi":"10.1186/s43897-023-00053-4","DOIUrl":null,"url":null,"abstract":"<p><p>Although it is well established that nitrogen (N) deficiency induces leaf senescence, the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown. Here, we show that an abscisic acid (ABA)-responsive NAC transcription factor (TF) is involved in N deficiency-induced leaf senescence. The overexpression of MdNAC4 led to increased ABA levels in apple calli by directly activating the transcription of the ABA biosynthesis gene MdNCED2. In addition, MdNAC4 overexpression promoted N deficiency-induced leaf senescence. Further investigation showed that MdNAC4 directly bound the promoter of the senescence-associated gene (SAG) MdSAG39 and upregulated its expression. Interestingly, the function of MdNAC4 in promoting N deficiency-induced leaf senescence was enhanced in the presence of ABA. Furthermore, we identified an interaction between the ABA receptor protein MdPYL4 and the MdNAC4 protein. Moreover, MdPYL4 showed a function similar to that of MdNAC4 in ABA-mediated N deficiency-induced leaf senescence. These findings suggest that ABA plays a central role in N deficiency-induced leaf senescence and that MdPYL4 interacts with MdNAC4 to enhance the response of the latter to N deficiency, thus promoting N deficiency-induced leaf senescence. In conclusion, our results provide new insight into how MdNAC4 regulates N deficiency-induced leaf senescence.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"5"},"PeriodicalIF":10.6000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-023-00053-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Although it is well established that nitrogen (N) deficiency induces leaf senescence, the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown. Here, we show that an abscisic acid (ABA)-responsive NAC transcription factor (TF) is involved in N deficiency-induced leaf senescence. The overexpression of MdNAC4 led to increased ABA levels in apple calli by directly activating the transcription of the ABA biosynthesis gene MdNCED2. In addition, MdNAC4 overexpression promoted N deficiency-induced leaf senescence. Further investigation showed that MdNAC4 directly bound the promoter of the senescence-associated gene (SAG) MdSAG39 and upregulated its expression. Interestingly, the function of MdNAC4 in promoting N deficiency-induced leaf senescence was enhanced in the presence of ABA. Furthermore, we identified an interaction between the ABA receptor protein MdPYL4 and the MdNAC4 protein. Moreover, MdPYL4 showed a function similar to that of MdNAC4 in ABA-mediated N deficiency-induced leaf senescence. These findings suggest that ABA plays a central role in N deficiency-induced leaf senescence and that MdPYL4 interacts with MdNAC4 to enhance the response of the latter to N deficiency, thus promoting N deficiency-induced leaf senescence. In conclusion, our results provide new insight into how MdNAC4 regulates N deficiency-induced leaf senescence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NAC转录因子MdNAC4通过增强苹果ABA生物合成,正向调节缺氮诱导的叶片衰老。
尽管氮缺乏诱导叶片衰老已经得到了很好的证实,但氮缺乏诱导的叶片衰老的分子机制在很大程度上仍然未知。在这里,我们发现脱落酸(ABA)反应性NAC转录因子(TF)参与了缺氮诱导的叶片衰老。MdNAC4的过表达通过直接激活ABA生物合成基因MdNCED2的转录而导致苹果愈伤组织中ABA水平的增加。此外,MdNAC4过表达促进了缺氮诱导的叶片衰老。进一步的研究表明,MdNAC4直接结合衰老相关基因(SAG)MdSAG39的启动子并上调其表达。有趣的是,在ABA存在的情况下,MdNAC4在促进缺氮诱导的叶片衰老中的作用增强。此外,我们鉴定了ABA受体蛋白MdPYL4和MdNAC4蛋白之间的相互作用。此外,在ABA介导的缺氮诱导的叶片衰老中,MdPYL4表现出与MdNAC4相似的功能。这些发现表明,ABA在缺氮诱导的叶片衰老中起着核心作用,并且MdPYL4与MdNAC4相互作用以增强后者对缺氮的反应,从而促进缺氮诱导叶片衰老。总之,我们的研究结果为MdNAC4如何调节缺氮诱导的叶片衰老提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
期刊最新文献
Horizontal transfer of plasmid-like extrachromosomal circular DNAs across graft junctions in Solanaceae. Transcription factor PbrERF114 is involved in the regulation of ethylene synthesis during pear fruit ripening. Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. Ovule initiation in crops characterized by multi-ovulate ovaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1