Effects of Multiple High-Dose Methamphetamine Administration on Enteric Dopaminergic Neurons and Intestinal Motility in the Rat Model.

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neurotoxicity Research Pub Date : 2023-12-01 Epub Date: 2023-09-27 DOI:10.1007/s12640-023-00668-x
Li He, Huihui Zheng, Jilong Qiu, Hong Chen, Huan Li, Yuejiao Ma, Yingying Wang, Qianjin Wang, Yuzhu Hao, Yueheng Liu, Qian Yang, Xin Wang, Manyun Li, Huixue Xu, Pu Peng, Zejun Li, Yanan Zhou, Qiuxia Wu, Shubao Chen, Xiaojie Zhang, Tieqiao Liu
{"title":"Effects of Multiple High-Dose Methamphetamine Administration on Enteric Dopaminergic Neurons and Intestinal Motility in the Rat Model.","authors":"Li He, Huihui Zheng, Jilong Qiu, Hong Chen, Huan Li, Yuejiao Ma, Yingying Wang, Qianjin Wang, Yuzhu Hao, Yueheng Liu, Qian Yang, Xin Wang, Manyun Li, Huixue Xu, Pu Peng, Zejun Li, Yanan Zhou, Qiuxia Wu, Shubao Chen, Xiaojie Zhang, Tieqiao Liu","doi":"10.1007/s12640-023-00668-x","DOIUrl":null,"url":null,"abstract":"<p><p>Several studies have identified the effects of methamphetamine (MA) on central dopaminergic neurons, but its effects on enteric dopaminergic neurons (EDNs) are unclear. The aim of this study was to investigate the effects of MA on EDNs and intestinal motility. Male Sprague-Dawley rats were randomly divided into MA group and saline group. The MA group received the multiple high-dose MA treatment paradigm, while the controls received the same saline treatment. After enteric motility was assessed, different intestinal segments (i.e., duodenum, jejunum, ileum, and colon) were taken for histopathological, molecular biological, and immunological analysis. The EDNs were assessed by measuring the expression of two dopaminergic neuronal markers, dopamine transporter (DAT) and tyrosine hydroxylase (TH), at the transcriptional and protein levels. We also used c-Fos protein, a marker of neural activity, to detect the activation of EDNs. MA resulted in a significant reduction in TH and DAT mRNA expression as well as in the number of EDNs in the duodenum and jejunum (p < 0.05). MA caused a dramatic increase in c-Fos expression of EDNs in the ileum (p < 0.001). The positional variability of MA effects on EDNs paralleled the positional variability of its effect on intestinal motility, as evidenced by the marked inhibitory effect of MA on small intestinal motility (p < 0.0001). This study found significant effects of MA on EDNs with locational variability, which might be relevant to locational variability in the potential effects of MA on intestinal functions, such as motility.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":" ","pages":"604-614"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00668-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Several studies have identified the effects of methamphetamine (MA) on central dopaminergic neurons, but its effects on enteric dopaminergic neurons (EDNs) are unclear. The aim of this study was to investigate the effects of MA on EDNs and intestinal motility. Male Sprague-Dawley rats were randomly divided into MA group and saline group. The MA group received the multiple high-dose MA treatment paradigm, while the controls received the same saline treatment. After enteric motility was assessed, different intestinal segments (i.e., duodenum, jejunum, ileum, and colon) were taken for histopathological, molecular biological, and immunological analysis. The EDNs were assessed by measuring the expression of two dopaminergic neuronal markers, dopamine transporter (DAT) and tyrosine hydroxylase (TH), at the transcriptional and protein levels. We also used c-Fos protein, a marker of neural activity, to detect the activation of EDNs. MA resulted in a significant reduction in TH and DAT mRNA expression as well as in the number of EDNs in the duodenum and jejunum (p < 0.05). MA caused a dramatic increase in c-Fos expression of EDNs in the ileum (p < 0.001). The positional variability of MA effects on EDNs paralleled the positional variability of its effect on intestinal motility, as evidenced by the marked inhibitory effect of MA on small intestinal motility (p < 0.0001). This study found significant effects of MA on EDNs with locational variability, which might be relevant to locational variability in the potential effects of MA on intestinal functions, such as motility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多次大剂量甲基苯丙胺给药对大鼠模型中肠道多巴胺能神经元和肠道运动的影响。
一些研究已经确定了甲基苯丙胺(MA)对中枢多巴胺能神经元的影响,但其对肠道多巴胺能神经元(EDNs)的影响尚不清楚。本研究的目的是研究MA对EDNs和肠道运动的影响。雄性Sprague-Dawley大鼠随机分为MA组和生理盐水组。MA组接受多次高剂量MA治疗,而对照组接受相同的盐水治疗。评估肠动力后,取不同的肠段(即十二指肠、空肠、回肠和结肠)进行组织病理学、分子生物学和免疫学分析。通过在转录和蛋白质水平上测量多巴胺能神经元标志物多巴胺转运蛋白(DAT)和酪氨酸羟化酶(TH)的表达来评估EDNs。我们还使用c-Fos蛋白,一种神经活性的标志物,来检测EDNs的激活。MA导致TH和DAT mRNA的表达以及十二指肠和空肠中EDN的数量显著减少(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
期刊最新文献
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1