Integrative physiology of lysine metabolites.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-10-02 DOI:10.1152/physiolgenomics.00061.2023
Yifan Tan, Maria Chrysopoulou, Markus M Rinschen
{"title":"Integrative physiology of lysine metabolites.","authors":"Yifan Tan, Maria Chrysopoulou, Markus M Rinschen","doi":"10.1152/physiolgenomics.00061.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine is an essential amino acid that serves as a building block in protein synthesis. Beside this, the metabolic activity of lysine has only recently been unraveled. Lysine metabolism is tissue specific and is linked to several renal, cardiovascular, and endocrinological diseases through human metabolomics datasets. As a free molecule, lysine takes part in the antioxidant response and engages in protein modifications, and its chemistry shapes both proteome and metabolome. In the proteome, it is an acceptor for a plethora of posttranslational modifications. In the metabolome, it can be modified, conjugated, and degraded. Here, we provide an update on integrative physiology of mammalian lysine metabolites such as α-aminoadipic acid, saccharopine, pipecolic acid, and lysine conjugates such as acetyl-lysine, and sugar-lysine conjugates such as advanced glycation end products. We also comment on their emerging associative and mechanistic links to renal disease, hypertension, diabetes, and cancer.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00061.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Lysine is an essential amino acid that serves as a building block in protein synthesis. Beside this, the metabolic activity of lysine has only recently been unraveled. Lysine metabolism is tissue specific and is linked to several renal, cardiovascular, and endocrinological diseases through human metabolomics datasets. As a free molecule, lysine takes part in the antioxidant response and engages in protein modifications, and its chemistry shapes both proteome and metabolome. In the proteome, it is an acceptor for a plethora of posttranslational modifications. In the metabolome, it can be modified, conjugated, and degraded. Here, we provide an update on integrative physiology of mammalian lysine metabolites such as α-aminoadipic acid, saccharopine, pipecolic acid, and lysine conjugates such as acetyl-lysine, and sugar-lysine conjugates such as advanced glycation end products. We also comment on their emerging associative and mechanistic links to renal disease, hypertension, diabetes, and cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
赖氨酸代谢产物的综合生理学。
赖氨酸是一种重要的氨基酸,是蛋白质合成的组成部分。除此之外,赖氨酸的代谢活性直到最近才被发现。赖氨酸代谢是组织特异性的,通过人类代谢组学数据集与几种肾脏、心血管和内分泌疾病有关。作为一种游离分子,赖氨酸参与抗氧化反应,参与蛋白质修饰,其化学性质塑造了蛋白质组和代谢组。在蛋白质组中,它是大量翻译后修饰的受体。在代谢组中,它可以被修饰、偶联和降解。在这里,我们提供了哺乳动物赖氨酸代谢产物(如α-氨基己二酸、糖精碱、哌啶酸)和赖氨酸偶联物(如乙酰赖氨酸)以及糖-赖氨酸缀合物(如晚期糖基化终产物)的综合生理学的最新进展。我们还评论了它们与肾脏疾病、高血压、糖尿病和癌症之间新出现的关联和机制联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1