Shuang Guo, Chengli Qian, Wenfeng Li, Zhikun Zeng, Junlong Cai, Yi Luo
{"title":"Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke.","authors":"Shuang Guo, Chengli Qian, Wenfeng Li, Zhikun Zeng, Junlong Cai, Yi Luo","doi":"10.1159/000533984","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"226-236"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunomodulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533984","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.
期刊介绍:
The rapidly expanding area of research known as neuroimmunomodulation explores the way in which the nervous system interacts with the immune system via neural, hormonal, and paracrine actions. Encompassing both basic and clinical research, ''Neuroimmunomodulation'' reports on all aspects of these interactions. Basic investigations consider all neural and humoral networks from molecular genetics through cell regulation to integrative systems of the body. The journal also aims to clarify the basic mechanisms involved in the pathogenesis of the CNS pathology in AIDS patients and in various neurodegenerative diseases. Although primarily devoted to research articles, timely reviews are published on a regular basis.