Verónica Miró Pina , Émilien Joly , Arno Siri-Jégousse
{"title":"Estimating the Lambda measure in multiple-merger coalescents","authors":"Verónica Miró Pina , Émilien Joly , Arno Siri-Jégousse","doi":"10.1016/j.tpb.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple-merger coalescents, also known as <span><math><mi>Λ</mi></math></span>-coalescents, have been used to describe the genealogy of populations that have a skewed offspring distribution or that undergo strong selection. Inferring the characteristic measure <span><math><mi>Λ</mi></math></span>, which describes the rates of the multiple-merger events, is key to understand these processes. So far, most inference methods only work for some particular families of <span><math><mi>Λ</mi></math></span>-coalescents that are described by only one parameter, but not for more general models. This article is devoted to the construction of a non-parametric estimator of the density of <span><math><mi>Λ</mi></math></span> that is based on the observation at a single time of the so-called Site Frequency Spectrum (SFS), which describes the allelic frequencies in a present population sample. First, we produce estimates of the multiple-merger rates by solving a linear system, whose coefficients are obtained by appropriately subsampling the SFS. Then, we use a technique that aggregates the information extracted from the previous step through a kernel type of re-construction to give a non-parametric estimation of the measure <span><math><mi>Λ</mi></math></span>. We give a consistency result of this estimator under mild conditions on the behavior of <span><math><mi>Λ</mi></math></span> around 0. We also show some numerical examples of how our method performs.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580923000618","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple-merger coalescents, also known as -coalescents, have been used to describe the genealogy of populations that have a skewed offspring distribution or that undergo strong selection. Inferring the characteristic measure , which describes the rates of the multiple-merger events, is key to understand these processes. So far, most inference methods only work for some particular families of -coalescents that are described by only one parameter, but not for more general models. This article is devoted to the construction of a non-parametric estimator of the density of that is based on the observation at a single time of the so-called Site Frequency Spectrum (SFS), which describes the allelic frequencies in a present population sample. First, we produce estimates of the multiple-merger rates by solving a linear system, whose coefficients are obtained by appropriately subsampling the SFS. Then, we use a technique that aggregates the information extracted from the previous step through a kernel type of re-construction to give a non-parametric estimation of the measure . We give a consistency result of this estimator under mild conditions on the behavior of around 0. We also show some numerical examples of how our method performs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.