Selecting the best optimizers for deep learning-based medical image segmentation.

Frontiers in radiology Pub Date : 2023-09-21 eCollection Date: 2023-01-01 DOI:10.3389/fradi.2023.1175473
Aliasghar Mortazi, Vedat Cicek, Elif Keles, Ulas Bagci
{"title":"Selecting the best optimizers for deep learning-based medical image segmentation.","authors":"Aliasghar Mortazi, Vedat Cicek, Elif Keles, Ulas Bagci","doi":"10.3389/fradi.2023.1175473","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The goal of this work is to explore the best optimizers for deep learning in the context of medical image segmentation and to provide guidance on how to design segmentation networks with effective optimization strategies.</p><p><strong>Approach: </strong>Most successful deep learning networks are trained using two types of stochastic gradient descent (SGD) algorithms: adaptive learning and accelerated schemes. Adaptive learning helps with fast convergence by starting with a larger learning rate (LR) and gradually decreasing it. Momentum optimizers are particularly effective at quickly optimizing neural networks within the accelerated schemes category. By revealing the potential interplay between these two types of algorithms [LR and momentum optimizers or momentum rate (MR) in short], in this article, we explore the two variants of SGD algorithms in a single setting. We suggest using cyclic learning as the base optimizer and integrating optimal values of learning rate and momentum rate. The new optimization function proposed in this work is based on the Nesterov accelerated gradient optimizer, which is more efficient computationally and has better generalization capabilities compared to other adaptive optimizers.</p><p><strong>Results: </strong>We investigated the relationship of LR and MR under an important problem of medical image segmentation of cardiac structures from MRI and CT scans. We conducted experiments using the cardiac imaging dataset from the ACDC challenge of MICCAI 2017, and four different architectures were shown to be successful for cardiac image segmentation problems. Our comprehensive evaluations demonstrated that the proposed optimizer achieved better results (over a 2% improvement in the dice metric) than other optimizers in the deep learning literature with similar or lower computational cost in both single and multi-object segmentation settings.</p><p><strong>Conclusions: </strong>We hypothesized that the combination of accelerated and adaptive optimization methods can have a drastic effect in medical image segmentation performances. To this end, we proposed a new cyclic optimization method (<i>Cyclic Learning/Momentum Rate</i>) to address the efficiency and accuracy problems in deep learning-based medical image segmentation. The proposed strategy yielded better generalization in comparison to adaptive optimizers.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"3 ","pages":"1175473"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2023.1175473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The goal of this work is to explore the best optimizers for deep learning in the context of medical image segmentation and to provide guidance on how to design segmentation networks with effective optimization strategies.

Approach: Most successful deep learning networks are trained using two types of stochastic gradient descent (SGD) algorithms: adaptive learning and accelerated schemes. Adaptive learning helps with fast convergence by starting with a larger learning rate (LR) and gradually decreasing it. Momentum optimizers are particularly effective at quickly optimizing neural networks within the accelerated schemes category. By revealing the potential interplay between these two types of algorithms [LR and momentum optimizers or momentum rate (MR) in short], in this article, we explore the two variants of SGD algorithms in a single setting. We suggest using cyclic learning as the base optimizer and integrating optimal values of learning rate and momentum rate. The new optimization function proposed in this work is based on the Nesterov accelerated gradient optimizer, which is more efficient computationally and has better generalization capabilities compared to other adaptive optimizers.

Results: We investigated the relationship of LR and MR under an important problem of medical image segmentation of cardiac structures from MRI and CT scans. We conducted experiments using the cardiac imaging dataset from the ACDC challenge of MICCAI 2017, and four different architectures were shown to be successful for cardiac image segmentation problems. Our comprehensive evaluations demonstrated that the proposed optimizer achieved better results (over a 2% improvement in the dice metric) than other optimizers in the deep learning literature with similar or lower computational cost in both single and multi-object segmentation settings.

Conclusions: We hypothesized that the combination of accelerated and adaptive optimization methods can have a drastic effect in medical image segmentation performances. To this end, we proposed a new cyclic optimization method (Cyclic Learning/Momentum Rate) to address the efficiency and accuracy problems in deep learning-based medical image segmentation. The proposed strategy yielded better generalization in comparison to adaptive optimizers.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为基于深度学习的医学图像分割选择最佳优化器。
目的:本工作的目标是探索医学图像分割背景下深度学习的最佳优化器,并为如何设计具有有效优化策略的分割网络提供指导。方法:大多数成功的深度学习网络使用两种类型的随机梯度下降(SGD)算法进行训练:自适应学习和加速方案。自适应学习通过从更大的学习率(LR)开始并逐渐降低它来帮助快速收敛。动量优化器在快速优化加速方案类别中的神经网络方面特别有效。在本文中,通过揭示这两种类型的算法[LR和动量优化器或动量率(MR)]之间的潜在相互作用,我们在单个设置中探索了SGD算法的两种变体。我们建议使用循环学习作为基础优化器,并集成学习率和动量率的最优值。本工作中提出的新优化函数基于Nesterov加速梯度优化器,与其他自适应优化器相比,该算法计算效率更高,泛化能力更强。结果:在MRI和CT扫描的心脏结构医学图像分割这一重要问题下,我们研究了LR和MR的关系。我们使用MICCAI 2017的ACDC挑战中的心脏成像数据集进行了实验,四种不同的架构被证明可以成功地解决心脏图像分割问题。我们的综合评估表明,与深度学习文献中的其他优化器相比,所提出的优化器在单对象和多对象分割设置中都以类似或更低的计算成本获得了更好的结果(骰子度量提高了2%以上)。结论:我们假设加速和自适应优化方法的结合可以对医学图像分割性能产生显著影响。为此,我们提出了一种新的循环优化方法(循环学习/动量率)来解决基于深度学习的医学图像分割的效率和准确性问题。与自适应优化器相比,所提出的策略具有更好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Language task-based fMRI analysis using machine learning and deep learning. Case Report: Diffuse cerebral lymphomatosis with superimposed multifocal primary CNS lymphoma. Diffusion-weighted MRI in the identification of renal parenchymal involvement in children with a first episode of febrile urinary tract infection. SenseCare: a research platform for medical image informatics and interactive 3D visualization. Editorial: Artificial intelligence and multimodal medical imaging data fusion for improving cardiovascular disease care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1