Elucidating a Complex Mechanism.

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2023-09-29 eCollection Date: 2023-01-01 DOI:10.1093/function/zqad051
Victor Wray
{"title":"Elucidating a Complex Mechanism.","authors":"Victor Wray","doi":"10.1093/function/zqad051","DOIUrl":null,"url":null,"abstract":"ur understanding of the complex dynamic system dri v en by onformational change during adenosine triphosphate (ATP) ydr ol ysis by F 1 -ATPase is of fundamental biochemical imporance. 1 , 2 Cr yo-electr on micr oscopy (Cr yo-EM) studies 3 −5 have ontributed v alua b le structural information on how the F 1 TPase functions, although, in themselves, these have not led o a definiti v e mechanism. The F 1 -ATPase is a multi-subunit sysem containing 3 β-catalytic sites that have been studied by biohysical single-molecule experiments based on direct visualizaion of the rotation of its central γ -subunit. 6 However, it is difcult to esta b lish which interconverting site or sites contribute nergy for the observ ed r otation, gi v en that a site can perform he elementary chemical steps of ATP binding, ATP hydr ol ytic ond cleav a ge, and pr oduct (Pi and adenosine diphosphate, ADP) elease. 7 Originally, the molecular mechanism of ATP syntheis/hydr ol ysis w as studied using classical biochemical pproaches that provided a wealth of fundamental data. A i-site Boyer’s binding change mechanism of ATP syntheis/hydr ol ysis (Nobel Prize for Chemistry, 1997) was postulated etween 1973 and 1993 based on biochemical unisite/multisite atalysis and oxygen exchange experiments. 8 An alternati v e ri-site Nath’s torsional mechanism of energy transduction nd ATP synthesis/hydr ol ysis w as first pr oposed in 1999 and ev eloped ov er the next 25 yr using a nov el m ultidisciplinar y pproac h, 9 whic h inte gr ated physics, c hemistry, bioc hemistry, nd engineering. The dir ect measur ements by Senior and oworkers of the fluorescence quenching of tryptophan probes","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":"4 6","pages":"zqad051"},"PeriodicalIF":5.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548849/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqad051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

ur understanding of the complex dynamic system dri v en by onformational change during adenosine triphosphate (ATP) ydr ol ysis by F 1 -ATPase is of fundamental biochemical imporance. 1 , 2 Cr yo-electr on micr oscopy (Cr yo-EM) studies 3 −5 have ontributed v alua b le structural information on how the F 1 TPase functions, although, in themselves, these have not led o a definiti v e mechanism. The F 1 -ATPase is a multi-subunit sysem containing 3 β-catalytic sites that have been studied by biohysical single-molecule experiments based on direct visualizaion of the rotation of its central γ -subunit. 6 However, it is difcult to esta b lish which interconverting site or sites contribute nergy for the observ ed r otation, gi v en that a site can perform he elementary chemical steps of ATP binding, ATP hydr ol ytic ond cleav a ge, and pr oduct (Pi and adenosine diphosphate, ADP) elease. 7 Originally, the molecular mechanism of ATP syntheis/hydr ol ysis w as studied using classical biochemical pproaches that provided a wealth of fundamental data. A i-site Boyer’s binding change mechanism of ATP syntheis/hydr ol ysis (Nobel Prize for Chemistry, 1997) was postulated etween 1973 and 1993 based on biochemical unisite/multisite atalysis and oxygen exchange experiments. 8 An alternati v e ri-site Nath’s torsional mechanism of energy transduction nd ATP synthesis/hydr ol ysis w as first pr oposed in 1999 and ev eloped ov er the next 25 yr using a nov el m ultidisciplinar y pproac h, 9 whic h inte gr ated physics, c hemistry, bioc hemistry, nd engineering. The dir ect measur ements by Senior and oworkers of the fluorescence quenching of tryptophan probes

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阐明一个复杂的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Intrinsic Skeletal Muscle Function and Contraction-Stimulated Glucose Uptake Do Not Vary by Time-of-Day in Mice. Impaired Neurocirculatory Control in Chronic Kidney Disease: New Evidence for Blunted Sympathetic Baroreflex and Reduced Sympathetic Transduction. Malaria and Hypertension: What Is the Direction of Association? Exploring Circadian Changes in Muscle Physiology: Methodological Considerations. A Skeletal Muscle-Mediated Anticontractile Response on Vascular Tone: Unraveling the Lactate-AMPK-NOS1 Pathway in Femoral Arteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1