Vection induced by a pair of patches of synchronized visual motion stimuli covering total field of views as small as 10 square-degrees.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-09-24 eCollection Date: 2023-09-01 DOI:10.1177/20416695231201463
Coskun Joe Dizmen, Richard H Y So
{"title":"Vection induced by a pair of patches of synchronized visual motion stimuli covering total field of views as small as 10 square-degrees.","authors":"Coskun Joe Dizmen,&nbsp;Richard H Y So","doi":"10.1177/20416695231201463","DOIUrl":null,"url":null,"abstract":"<p><p>Vection (illusion of self-motion) is known to be induced by watching large field-of-view (FOV) moving scenes. In our study, we investigated vection induced by small FOV stimuli. Three experiments were conducted in 45 sessions to analyze vection provoked by moving scenes covering total FOVs as small as 10 square-degrees. Results indicated that 88% of the participants reported vection while watching two small patches of moving dots (1° horizontal by 5° vertical, each) placed on the left and right sides of the observers. This is less than a quarter of the total visual area of two Apple Watches viewed at a distance of 40 cm. Occlusion of the visual field between the two display patches significantly increased the levels of rated vection. Similarly, increasing the speed of the moving dots of the two display patches from about 5 to 25 °/sec increased the levels of rated vection significantly. The location of the two patches in the horizontal visual field did not affect the vection perception significantly. When the two straight stripes of dots were moving in opposite directions, participants perceived circular vection. The observers connected the two stimuli in their minds and perceived them as parts of a single occluded background. The findings of this study are relevant to the design of mobile devices (e.g., smartphones) and wearable technology (e.g., smart watches) with small display areas.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/20416695231201463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Vection (illusion of self-motion) is known to be induced by watching large field-of-view (FOV) moving scenes. In our study, we investigated vection induced by small FOV stimuli. Three experiments were conducted in 45 sessions to analyze vection provoked by moving scenes covering total FOVs as small as 10 square-degrees. Results indicated that 88% of the participants reported vection while watching two small patches of moving dots (1° horizontal by 5° vertical, each) placed on the left and right sides of the observers. This is less than a quarter of the total visual area of two Apple Watches viewed at a distance of 40 cm. Occlusion of the visual field between the two display patches significantly increased the levels of rated vection. Similarly, increasing the speed of the moving dots of the two display patches from about 5 to 25 °/sec increased the levels of rated vection significantly. The location of the two patches in the horizontal visual field did not affect the vection perception significantly. When the two straight stripes of dots were moving in opposite directions, participants perceived circular vection. The observers connected the two stimuli in their minds and perceived them as parts of a single occluded background. The findings of this study are relevant to the design of mobile devices (e.g., smartphones) and wearable technology (e.g., smart watches) with small display areas.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由一对覆盖小到10平方度的总视野的同步视觉运动刺激引起的视觉运动。
众所周知,通过观看大视场(FOV)运动场景会引起视觉错觉。在我们的研究中,我们研究了小视场刺激诱导的矢量。在45个会话中进行了三个实验,以分析由覆盖小到10平方度的总FOV的移动场景引起的矢量。结果表明,88%的参与者在观察观察者左右两侧的两小块移动点(每个点水平1°,垂直5°)时报告了矢量。这还不到两块苹果手表在40米外观看总视觉面积的四分之一 两个显示贴片之间的视野的遮挡显著增加了额定矢量的水平。类似地,将两个显示补丁的移动点的速度从大约5°/秒增加到25°/秒,显著增加了额定矢量的水平。两个斑块在水平视野中的位置对矢量感知没有显著影响。当两条直条纹的点向相反的方向移动时,参与者会感知到圆形矢量。观察者将两种刺激在他们的脑海中联系起来,并将其视为单一封闭背景的一部分。这项研究的结果与具有小显示区域的移动设备(如智能手机)和可穿戴技术(如智能手表)的设计有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1