Marcelo Garrido Dos Santos, Fernanda Stapenhorst França, João Pedro Prestes, Cristian Teixeira, Luiz Carlos Sommer, Laura Elena Sperling, Patricia Pranke
{"title":"Production of a Bioink Containing Decellularized Spinal Cord Tissue for 3D Bioprinting.","authors":"Marcelo Garrido Dos Santos, Fernanda Stapenhorst França, João Pedro Prestes, Cristian Teixeira, Luiz Carlos Sommer, Laura Elena Sperling, Patricia Pranke","doi":"10.1089/ten.TEA.2023.0078","DOIUrl":null,"url":null,"abstract":"<p><p>For the past few years, three-dimensional (3D) bioprinting has emerged as a promising approach in the field of regenerative medicine. This technique allows for the production of 3D scaffolds to support cell transplantation due to its ability to mimic the extracellular environment. One alternative to enhancing cell adhesion, survival, and proliferation is the use of decellularized extracellular matrix as a bioink component. The aim of this study was to produce a bioink using lyophilized rat decellularized spinal cord tissue (DSCT) for 3D bioprinting of nervous tissue. DNA quantification, hematoxylin and eosin and DAPI staining indicated that 1% sodium dodecyl sulfate and 9 h processing were effective in removing the cells from the spinal cord samples. The cell viability assay showed that the decellularized matrix is not cytotoxic for PC12 cells. The hydrogel containing DSCT, alginate, and gelatine used as the base for the bioink has a shear thinning behavior and low G″/G' ratio, allowing for good printability without compromising cell viability after 3D bioprinting. The bioink supported long-term PC12 cell survival, with 93% of live cells 4 weeks after printing, and stimulated the production of laminin-1 and neurofilament-M. This bioink, therefore, represents an easily available biomaterial for central nervous system tissue engineering.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
For the past few years, three-dimensional (3D) bioprinting has emerged as a promising approach in the field of regenerative medicine. This technique allows for the production of 3D scaffolds to support cell transplantation due to its ability to mimic the extracellular environment. One alternative to enhancing cell adhesion, survival, and proliferation is the use of decellularized extracellular matrix as a bioink component. The aim of this study was to produce a bioink using lyophilized rat decellularized spinal cord tissue (DSCT) for 3D bioprinting of nervous tissue. DNA quantification, hematoxylin and eosin and DAPI staining indicated that 1% sodium dodecyl sulfate and 9 h processing were effective in removing the cells from the spinal cord samples. The cell viability assay showed that the decellularized matrix is not cytotoxic for PC12 cells. The hydrogel containing DSCT, alginate, and gelatine used as the base for the bioink has a shear thinning behavior and low G″/G' ratio, allowing for good printability without compromising cell viability after 3D bioprinting. The bioink supported long-term PC12 cell survival, with 93% of live cells 4 weeks after printing, and stimulated the production of laminin-1 and neurofilament-M. This bioink, therefore, represents an easily available biomaterial for central nervous system tissue engineering.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.