A stochastic explanation for observed local-to-global foraging states in Caenorhabditis elegans.

ArXiv Pub Date : 2024-10-30
Andrew Margolis, Andrew Gordus
{"title":"A stochastic explanation for observed local-to-global foraging states in <i>Caenorhabditis elegans</i>.","authors":"Andrew Margolis, Andrew Gordus","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Abrupt changes in behavior can often be associated with changes in underlying behavioral states. When placed off food, the foraging behavior of <i>C. elegans</i> can be described as a change between an initial local-search behavior characterized by a high rate of reorientations, followed by a global-search behavior characterized by sparse reorientations. This is commonly observed in individual worms, but when numerous worms are characterized, only about half appear to exhibit this behavior. We propose an alternative model that predicts both abrupt and continuous changes to reorientation that does not rely on behavioral states. This model is inspired by molecular dynamics modeling that defines the foraging reorientation rate as a decaying parameter. By stochastically sampling from the probability distribution defined by this rate, both abrupt and gradual changes to reorientation rates can occur, matching experimentally observed results. Crucially, this model does not depend on behavioral states or information accumulation. Even though abrupt behavioral changes do occur, they are not necessarily indicative of abrupt changes in behavioral states, especially when abrupt changes are not universally observed in the population.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2d/7d/nihpp-2309.15174v1.PMC10557789.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abrupt changes in behavior can often be associated with changes in underlying behavioral states. When placed off food, the foraging behavior of C. elegans can be described as a change between an initial local-search behavior characterized by a high rate of reorientations, followed by a global-search behavior characterized by sparse reorientations. This is commonly observed in individual worms, but when numerous worms are characterized, only about half appear to exhibit this behavior. We propose an alternative model that predicts both abrupt and continuous changes to reorientation that does not rely on behavioral states. This model is inspired by molecular dynamics modeling that defines the foraging reorientation rate as a decaying parameter. By stochastically sampling from the probability distribution defined by this rate, both abrupt and gradual changes to reorientation rates can occur, matching experimentally observed results. Crucially, this model does not depend on behavioral states or information accumulation. Even though abrupt behavioral changes do occur, they are not necessarily indicative of abrupt changes in behavioral states, especially when abrupt changes are not universally observed in the population.

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
秀丽隐杆线虫局部到全球觅食状态的随机解释。
行为的突然变化通常与潜在行为状态的变化有关。当远离食物时,秀丽隐杆线虫的觅食行为可以描述为以高重定向率为特征的初始局部搜索行为和以稀疏重定向为特征的全局搜索行为之间的变化。这通常在单个蠕虫身上观察到,但当对大量蠕虫进行表征时,只有大约一半的蠕虫表现出这种行为。我们提出了一个替代模型,该模型预测不依赖于行为状态的突然和连续的重新定向变化。该模型的灵感来自分子动力学建模,该建模将觅食重新定向速率定义为衰减参数。通过从该速率定义的概率分布中随机采样,可以发生重新定向速率的突变和渐变,与实验观察到的结果相匹配。至关重要的是,这个模型不依赖于行为状态或信息积累。即使确实发生了突然的行为变化,它们也不一定预示着行为状态的突然变化,尤其是在人群中没有普遍观察到突然变化的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1