Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance.

Vanessa Richter, Michael Neumann, Jordan R Green, Brian Richburg, Oliver Roesler, Hardik Kothare, Vikram Ramanarayanan
{"title":"Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance.","authors":"Vanessa Richter,&nbsp;Michael Neumann,&nbsp;Jordan R Green,&nbsp;Brian Richburg,&nbsp;Oliver Roesler,&nbsp;Hardik Kothare,&nbsp;Vikram Ramanarayanan","doi":"10.21437/interspeech.2023-2115","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the feasibility, task compliance and audiovisual data quality of a multimodal dialog-based solution for remote assessment of Amyotrophic Lateral Sclerosis (ALS). 53 people with ALS and 52 healthy controls interacted with Tina, a cloud-based conversational agent, in performing speech tasks designed to probe various aspects of motor speech function while their audio and video was recorded. We rated a total of 250 recordings for audio/video quality and participant task compliance, along with the relative frequency of different issues observed. We observed excellent compliance (98%) and audio (95.2%) and visual quality rates (84.8%), resulting in an overall yield of 80.8% recordings that were both compliant and of high quality. Furthermore, recording quality and compliance were not affected by level of speech severity and did not differ significantly across end devices. These findings support the utility of dialog systems for remote monitoring of speech in ALS.</p>","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"2023 ","pages":"5441-5445"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547018/pdf/nihms-1931217.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2023-2115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the feasibility, task compliance and audiovisual data quality of a multimodal dialog-based solution for remote assessment of Amyotrophic Lateral Sclerosis (ALS). 53 people with ALS and 52 healthy controls interacted with Tina, a cloud-based conversational agent, in performing speech tasks designed to probe various aspects of motor speech function while their audio and video was recorded. We rated a total of 250 recordings for audio/video quality and participant task compliance, along with the relative frequency of different issues observed. We observed excellent compliance (98%) and audio (95.2%) and visual quality rates (84.8%), resulting in an overall yield of 80.8% recordings that were both compliant and of high quality. Furthermore, recording quality and compliance were not affected by level of speech severity and did not differ significantly across end devices. These findings support the utility of dialog systems for remote monitoring of speech in ALS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多模式对话代理对ALS进行远程评估:数据质量、可行性和任务符合性。
我们研究了用于肌萎缩侧索硬化症(ALS)远程评估的基于多模式对话的解决方案的可行性、任务依从性和视听数据质量。53名ALS患者和52名健康对照者与Tina(一种基于云的对话代理)进行了互动,在录制他们的音频和视频时,他们执行了旨在探索运动言语功能各个方面的言语任务。我们对总共250段录音的音频/视频质量和参与者任务依从性进行了评级,以及观察到的不同问题的相对频率。我们观察到良好的依从性(98%)、音频(95.2%)和视觉质量率(84.8%),导致80.8%的录音符合要求且质量高。此外,录音质量和合规性不受语音严重程度的影响,在终端设备之间也没有显著差异。这些发现支持对话系统在ALS语音远程监测中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1