Vanessa Richter, Michael Neumann, Jordan R Green, Brian Richburg, Oliver Roesler, Hardik Kothare, Vikram Ramanarayanan
{"title":"Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance.","authors":"Vanessa Richter, Michael Neumann, Jordan R Green, Brian Richburg, Oliver Roesler, Hardik Kothare, Vikram Ramanarayanan","doi":"10.21437/interspeech.2023-2115","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the feasibility, task compliance and audiovisual data quality of a multimodal dialog-based solution for remote assessment of Amyotrophic Lateral Sclerosis (ALS). 53 people with ALS and 52 healthy controls interacted with Tina, a cloud-based conversational agent, in performing speech tasks designed to probe various aspects of motor speech function while their audio and video was recorded. We rated a total of 250 recordings for audio/video quality and participant task compliance, along with the relative frequency of different issues observed. We observed excellent compliance (98%) and audio (95.2%) and visual quality rates (84.8%), resulting in an overall yield of 80.8% recordings that were both compliant and of high quality. Furthermore, recording quality and compliance were not affected by level of speech severity and did not differ significantly across end devices. These findings support the utility of dialog systems for remote monitoring of speech in ALS.</p>","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"2023 ","pages":"5441-5445"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547018/pdf/nihms-1931217.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2023-2115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the feasibility, task compliance and audiovisual data quality of a multimodal dialog-based solution for remote assessment of Amyotrophic Lateral Sclerosis (ALS). 53 people with ALS and 52 healthy controls interacted with Tina, a cloud-based conversational agent, in performing speech tasks designed to probe various aspects of motor speech function while their audio and video was recorded. We rated a total of 250 recordings for audio/video quality and participant task compliance, along with the relative frequency of different issues observed. We observed excellent compliance (98%) and audio (95.2%) and visual quality rates (84.8%), resulting in an overall yield of 80.8% recordings that were both compliant and of high quality. Furthermore, recording quality and compliance were not affected by level of speech severity and did not differ significantly across end devices. These findings support the utility of dialog systems for remote monitoring of speech in ALS.