Deep Hypersphere Feature Regularization for Weakly Supervised RGB-D Salient Object Detection

Zhiyu Liu;Munawar Hayat;Hong Yang;Duo Peng;Yinjie Lei
{"title":"Deep Hypersphere Feature Regularization for Weakly Supervised RGB-D Salient Object Detection","authors":"Zhiyu Liu;Munawar Hayat;Hong Yang;Duo Peng;Yinjie Lei","doi":"10.1109/TIP.2023.3318953","DOIUrl":null,"url":null,"abstract":"We propose a weakly supervised approach for salient object detection from multi-modal RGB-D data. Our approach only relies on labels from scribbles, which are much easier to annotate, compared with dense labels used in conventional fully supervised setting. In contrast to existing methods that employ supervision signals on the output space, our design regularizes the intermediate latent space to enhance discrimination between salient and non-salient objects. We further introduce a contour detection branch to implicitly constrain the semantic boundaries and achieve precise edges of detected salient objects. To enhance the long-range dependencies among local features, we introduce a Cross-Padding Attention Block (CPAB). Extensive experiments on seven benchmark datasets demonstrate that our method not only outperforms existing weakly supervised methods, but is also on par with several fully-supervised state-of-the-art models. Code is available at \n<uri>https://github.com/leolyj/DHFR-SOD</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"32 ","pages":"5423-5437"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10268352/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a weakly supervised approach for salient object detection from multi-modal RGB-D data. Our approach only relies on labels from scribbles, which are much easier to annotate, compared with dense labels used in conventional fully supervised setting. In contrast to existing methods that employ supervision signals on the output space, our design regularizes the intermediate latent space to enhance discrimination between salient and non-salient objects. We further introduce a contour detection branch to implicitly constrain the semantic boundaries and achieve precise edges of detected salient objects. To enhance the long-range dependencies among local features, we introduce a Cross-Padding Attention Block (CPAB). Extensive experiments on seven benchmark datasets demonstrate that our method not only outperforms existing weakly supervised methods, but is also on par with several fully-supervised state-of-the-art models. Code is available at https://github.com/leolyj/DHFR-SOD .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱监督RGB-D突出目标检测的深超球面特征正则化。
我们提出了一种从多模态RGB-D数据中检测显著目标的弱监督方法。我们的方法只依赖于涂鸦中的标签,与传统的完全监督环境中使用的密集标签相比,涂鸦更容易注释。与在输出空间上使用监督信号的现有方法相比,我们的设计规则化了中间潜在空间,以增强显著对象和非显著对象之间的区分。我们进一步引入了一个轮廓检测分支来隐式约束语义边界,并实现检测到的显著对象的精确边缘。为了增强局部特征之间的长程依赖性,我们引入了交叉填充注意力块(CPAB)。在七个基准数据集上的大量实验表明,我们的方法不仅优于现有的弱监督方法,而且与几个最先进的完全监督模型不相上下。代码可在https://github.com/leolyj/DHFR-SOD.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shell-Guided Compression of Voxel Radiance Fields Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation Joint Spatial and Frequency Domain Learning for Lightweight Spectral Image Demosaicing Implicit-Explicit Integrated Representations for Multi-View Video Compression All Roads Lead to Rome: Achieving 3D Object Encryption Through 2D Image Encryption Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1