{"title":"The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue.","authors":"Nurgül Şenol, Melda Şahin, Uğur Şahin","doi":"10.1080/15368378.2023.2265935","DOIUrl":null,"url":null,"abstract":"<p><p>There is strong scientific evidence that the electric field is harmful to life. Exposure to an electric field (EF) can cause lung toxicity and respiratory disorders. In addition, the electric field has been shown to cause tissue damage through inflammation and apoptosis. Juglone (JUG) is one of the powerful antioxidants with anti-apoptotic and anti-inflammatory, various pharmacological properties in the biological system. In this study, we evaluated the efficacy of JUG against the potential adverse effects of electric field on the lung. Twenty-four Wistar albino rats were randomly divided into three groups; control group (Cont), EF group, and EF exposure+JUG-treated group (EJUG). After routine histological procedures, sections stained with hematoxylin-eosin (H&E) showed significant changes in lung tissues in the EF group compared to the Cont group. Significant protective effects were observed in the building volumes and histopathology in the EJUG group. Our immunohistochemical and gene expression results increased the expression of caspase-3 and tumor necrosis factor alpha (TNF-α) in the EF group (<i>p</i> < 0.05). Juglon increased cytokine signal suppressor (SOCS) expression (<i>p</i> < 0.001). These findings were consistent with the antioxidant effect of JUG treatment. We reasoned that exposure to EF damaged rat lung tissues and administration of JUG alleviated the complications caused by 50 Hz EF.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2023.2265935","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is strong scientific evidence that the electric field is harmful to life. Exposure to an electric field (EF) can cause lung toxicity and respiratory disorders. In addition, the electric field has been shown to cause tissue damage through inflammation and apoptosis. Juglone (JUG) is one of the powerful antioxidants with anti-apoptotic and anti-inflammatory, various pharmacological properties in the biological system. In this study, we evaluated the efficacy of JUG against the potential adverse effects of electric field on the lung. Twenty-four Wistar albino rats were randomly divided into three groups; control group (Cont), EF group, and EF exposure+JUG-treated group (EJUG). After routine histological procedures, sections stained with hematoxylin-eosin (H&E) showed significant changes in lung tissues in the EF group compared to the Cont group. Significant protective effects were observed in the building volumes and histopathology in the EJUG group. Our immunohistochemical and gene expression results increased the expression of caspase-3 and tumor necrosis factor alpha (TNF-α) in the EF group (p < 0.05). Juglon increased cytokine signal suppressor (SOCS) expression (p < 0.001). These findings were consistent with the antioxidant effect of JUG treatment. We reasoned that exposure to EF damaged rat lung tissues and administration of JUG alleviated the complications caused by 50 Hz EF.
有强有力的科学证据表明电场对生命有害。暴露于电场(EF)会导致肺部毒性和呼吸系统疾病。此外,电场已被证明可通过炎症和细胞凋亡引起组织损伤。Juglone(JUG)是一种强大的抗氧化剂,在生物系统中具有抗细胞凋亡和抗炎、多种药理特性。在本研究中,我们评估了JUG对抗电场对肺部潜在不良影响的疗效。24只Wistar白化大鼠随机分为三组;对照组(Cont)、EF组和EF暴露+JUG治疗组(EJUG)。在常规组织学程序后,苏木精-伊红(H&E)染色的切片显示,与Cont组相比,EF组的肺组织发生了显著变化。在EJUG组的建筑体积和组织病理学中观察到显著的保护作用。我们的免疫组化和基因表达结果增加了EF组中胱天蛋白酶-3和肿瘤坏死因子-α(TNF-α)的表达(p p
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.