Experimental and in-host evolution of triazole resistance in human pathogenic fungi.

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2022-08-23 eCollection Date: 2022-01-01 DOI:10.3389/ffunb.2022.957577
Mariana Handelman, Nir Osherov
{"title":"Experimental and in-host evolution of triazole resistance in human pathogenic fungi.","authors":"Mariana Handelman,&nbsp;Nir Osherov","doi":"10.3389/ffunb.2022.957577","DOIUrl":null,"url":null,"abstract":"<p><p>The leading fungal pathogens causing systemic infections in humans are <i>Candida</i> spp., <i>Aspergillus fumigatus</i>, and <i>Cryptococcus neoformans</i>. The major class of antifungals used to treat such infections are the triazoles, which target the cytochrome P450 lanosterol 14-α-demethylase, encoded by the <i>ERG11</i> (yeasts)/<i>cyp51A</i> (molds) genes, catalyzing a key step in the ergosterol biosynthetic pathway. Triazole resistance in clinical fungi is a rising concern worldwide, causing increasing mortality in immunocompromised patients. This review describes the use of serial clinical isolates and <i>in-vitro</i> evolution toward understanding the mechanisms of triazole resistance. We outline, compare, and discuss how these approaches have helped identify the evolutionary pathways taken by pathogenic fungi to acquire triazole resistance. While they all share a core mechanism (mutation and overexpression of <i>ERG11/cyp51A</i> and efflux transporters), their timing and mechanism differs: <i>Candida and Cryptococcus</i> spp. exhibit resistance-conferring aneuploidies and copy number variants not seen in <i>A. fumigatus</i>. <i>Candida</i> spp. have a proclivity to develop resistance by undergoing mutations in transcription factors (<i>TAC1, MRR1, PDR5</i>) that increase the expression of efflux transporters. <i>A. fumigatus</i> is especially prone to accumulate resistance mutations in <i>cyp51A</i> early during the evolution of resistance. Recently, examination of serial clinical isolates and experimental lab-evolved triazole-resistant strains using modern omics and gene editing tools has begun to realize the full potential of these approaches. As a result, triazole-resistance mechanisms can now be analyzed at increasingly finer resolutions. This newfound knowledge will be instrumental in formulating new molecular approaches to fight the rapidly emerging epidemic of antifungal resistant fungi.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512370/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2022.957577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The leading fungal pathogens causing systemic infections in humans are Candida spp., Aspergillus fumigatus, and Cryptococcus neoformans. The major class of antifungals used to treat such infections are the triazoles, which target the cytochrome P450 lanosterol 14-α-demethylase, encoded by the ERG11 (yeasts)/cyp51A (molds) genes, catalyzing a key step in the ergosterol biosynthetic pathway. Triazole resistance in clinical fungi is a rising concern worldwide, causing increasing mortality in immunocompromised patients. This review describes the use of serial clinical isolates and in-vitro evolution toward understanding the mechanisms of triazole resistance. We outline, compare, and discuss how these approaches have helped identify the evolutionary pathways taken by pathogenic fungi to acquire triazole resistance. While they all share a core mechanism (mutation and overexpression of ERG11/cyp51A and efflux transporters), their timing and mechanism differs: Candida and Cryptococcus spp. exhibit resistance-conferring aneuploidies and copy number variants not seen in A. fumigatus. Candida spp. have a proclivity to develop resistance by undergoing mutations in transcription factors (TAC1, MRR1, PDR5) that increase the expression of efflux transporters. A. fumigatus is especially prone to accumulate resistance mutations in cyp51A early during the evolution of resistance. Recently, examination of serial clinical isolates and experimental lab-evolved triazole-resistant strains using modern omics and gene editing tools has begun to realize the full potential of these approaches. As a result, triazole-resistance mechanisms can now be analyzed at increasingly finer resolutions. This newfound knowledge will be instrumental in formulating new molecular approaches to fight the rapidly emerging epidemic of antifungal resistant fungi.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类病原真菌对三唑耐药性的实验和宿主内进化。
引起人类全身感染的主要真菌病原体是念珠菌、烟曲霉和新型隐球菌。用于治疗此类感染的主要抗真菌药物是三唑类,其靶向ERG11(酵母)/cyp51A(霉菌)基因编码的细胞色素P450羊毛甾醇14-α-去甲基化酶,催化麦角甾醇生物合成途径的关键步骤。临床真菌对三唑的耐药性日益引起全世界的关注,导致免疫功能低下患者的死亡率不断上升。这篇综述描述了一系列临床分离株的使用和体外进化,以了解三唑耐药性的机制。我们概述、比较和讨论了这些方法如何帮助确定致病真菌获得三唑耐药性的进化途径。虽然它们都有一个共同的核心机制(ERG11/cyp51A和外排转运蛋白的突变和过表达),但它们的时间和机制不同:念珠菌和隐球菌表现出耐药性非整倍体和拷贝数变异,这在烟曲霉中没有发现。念珠菌有通过转录因子(TAC1、MRR1、PDR5)发生突变来增加外排转运蛋白表达而产生耐药性的倾向。烟曲霉在抗性进化的早期特别容易在cyp51A中积累抗性突变。最近,使用现代组学和基因编辑工具对一系列临床分离株和实验实验室进化的三唑耐药性菌株进行检查,已经开始意识到这些方法的全部潜力。因此,现在可以以越来越精细的分辨率分析三唑抗性机制。这一新发现的知识将有助于制定新的分子方法来对抗快速出现的抗真菌耐药性真菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Metal tolerance of Río Tinto fungi. What lies behind the large genome of Colletotrichum lindemuthianum. Conserved perception of host and non-host signals via the a-pheromone receptor Ste3 in Colletotrichum graminicola. The yeast Wickerhamomyces anomalus acts as a predator of the olive anthracnose-causing fungi, Colletotrichum nymphaeae, C. godetiae, and C. gloeosporioides. Editorial: Co-morbidity of COVID 19 and fungal infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1