{"title":"Innovation and Patenting Activities During COVID-19 and Advancement of Biochemical and Molecular Diagnosis in the Post- COVID-19 Era.","authors":"Suman Kumar Ray, Sukhes Mukherjee","doi":"10.2174/0118722083262217230921042127","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic is to escalate globally and acquire new mutations quickly, so accurate diagnostic technologies play a vital role in controlling and understanding the epidemiology of the disease. A plethora of technologies acquires diagnosis of individuals and informs clinical management of COVID. Some important biochemical parameters for COVID diagnosis are the elevation of liver enzymes, creatinine, and nonspecific inflammatory markers such as C-reactive protein (CRP) and Interleukin 6 (IL-6). The main progression predictors are lymphopenia, elevated D-dimer, and hyperferritinemia, although it is also necessary to consider LDH, CPK, and troponin in the marker panel of diagnosis. Owing to the greater sensitivity and accuracy, molecular technologies such as conventional polymerase chain reaction (PCR), reverse transcription (RT)-PCR, nested PCR, loop-mediated isothermal amplification (LAMP), and xMAP technology have been extensively used for COVID diagnosis for some time now. To make so many diagnostics accessible to general people, many techniques may be exploited, including point of care (POC), also called bedside testing, which is developing as a portable promising tool in pathogen identification. Some other lateral flow assay (LFA)-centered techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor limited uniform detection assay (FELUDA), etc. have shown auspicious results in the rapid detection of pathogens. More recently, low-cost sequencing and advancements in big data management have resulted in a slow but steady rise of next-generation sequencing (NGS)-based approaches for diagnosis that have potential relevance for clinical purposes and may pave the way toward a better future. Due to the COVID-19 pandemic, various institutions provided free, specialized websites and tools to promote research and access to critically needed advanced solutions by alleviating research and analysis of data within a substantial body of scientific and patent literature regarding biochemical and molecular diagnosis published since January 2020. This circumstance is unquestionably unique and difficult for anyone using patent information to find pertinent disclosures at a specific date in a trustworthy manner.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"210-226"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118722083262217230921042127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic is to escalate globally and acquire new mutations quickly, so accurate diagnostic technologies play a vital role in controlling and understanding the epidemiology of the disease. A plethora of technologies acquires diagnosis of individuals and informs clinical management of COVID. Some important biochemical parameters for COVID diagnosis are the elevation of liver enzymes, creatinine, and nonspecific inflammatory markers such as C-reactive protein (CRP) and Interleukin 6 (IL-6). The main progression predictors are lymphopenia, elevated D-dimer, and hyperferritinemia, although it is also necessary to consider LDH, CPK, and troponin in the marker panel of diagnosis. Owing to the greater sensitivity and accuracy, molecular technologies such as conventional polymerase chain reaction (PCR), reverse transcription (RT)-PCR, nested PCR, loop-mediated isothermal amplification (LAMP), and xMAP technology have been extensively used for COVID diagnosis for some time now. To make so many diagnostics accessible to general people, many techniques may be exploited, including point of care (POC), also called bedside testing, which is developing as a portable promising tool in pathogen identification. Some other lateral flow assay (LFA)-centered techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor limited uniform detection assay (FELUDA), etc. have shown auspicious results in the rapid detection of pathogens. More recently, low-cost sequencing and advancements in big data management have resulted in a slow but steady rise of next-generation sequencing (NGS)-based approaches for diagnosis that have potential relevance for clinical purposes and may pave the way toward a better future. Due to the COVID-19 pandemic, various institutions provided free, specialized websites and tools to promote research and access to critically needed advanced solutions by alleviating research and analysis of data within a substantial body of scientific and patent literature regarding biochemical and molecular diagnosis published since January 2020. This circumstance is unquestionably unique and difficult for anyone using patent information to find pertinent disclosures at a specific date in a trustworthy manner.
期刊介绍:
Recent Patents on Biotechnology publishes review articles by experts on recent patents on biotechnology. A selection of important and recent patents on biotechnology is also included in the journal. The journal is essential reading for all researchers involved in all fields of biotechnology.