{"title":"On Secrecy Performance in D-MoSK-Based 3-D Diffusive Molecular Communication System","authors":"Zhen Jia;Lisheng Ma;Shigen Shen;Xiaohong Jiang","doi":"10.1109/TNB.2023.3321790","DOIUrl":null,"url":null,"abstract":"This paper studies the secrecy performance in a 3-D diffusive molecular communication system with the general depleted molecule shift keying (D-MoSK) modulation, where a point transmitter Alice transmits through diffusion multiple types of molecules modulation to a legitimate absorbing receiver Bob, suffering the eavesdropping from an absorbing eavesdropper Eve. We first develop a solid theoretical framework to determine the probabilistic distributions for the number of molecules absorbed by Bob and Eve, respectively. Based on the results, we then derive the average symbol error rate (SER) as well as the mutual information of Alice-Bob and Alice-Eve, and further apply the Shannon theory to determine the secrecy capacity of Alice-Bob transmission. We also develop the closed-form results for the optimal detection threshold at Bob to achieve the secrecy capacity, and thus devise a complete algorithm for secrecy capacity maximization. Finally, we provide numerical results to illustrate the secrecy performance in the concerned system.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10271725/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the secrecy performance in a 3-D diffusive molecular communication system with the general depleted molecule shift keying (D-MoSK) modulation, where a point transmitter Alice transmits through diffusion multiple types of molecules modulation to a legitimate absorbing receiver Bob, suffering the eavesdropping from an absorbing eavesdropper Eve. We first develop a solid theoretical framework to determine the probabilistic distributions for the number of molecules absorbed by Bob and Eve, respectively. Based on the results, we then derive the average symbol error rate (SER) as well as the mutual information of Alice-Bob and Alice-Eve, and further apply the Shannon theory to determine the secrecy capacity of Alice-Bob transmission. We also develop the closed-form results for the optimal detection threshold at Bob to achieve the secrecy capacity, and thus devise a complete algorithm for secrecy capacity maximization. Finally, we provide numerical results to illustrate the secrecy performance in the concerned system.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).