Developing electrochemical hydrogenation towards industrial application

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2023-10-10 DOI:10.1039/D3CS00419H
Julian T. Kleinhaus, Jonas Wolf, Kevinjeorjios Pellumbi, Leon Wickert, Sangita C. Viswanathan, Kai junge Puring, Daniel Siegmund and Ulf-Peter Apfel
{"title":"Developing electrochemical hydrogenation towards industrial application","authors":"Julian T. Kleinhaus, Jonas Wolf, Kevinjeorjios Pellumbi, Leon Wickert, Sangita C. Viswanathan, Kai junge Puring, Daniel Siegmund and Ulf-Peter Apfel","doi":"10.1039/D3CS00419H","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 21","pages":" 7305-7332"},"PeriodicalIF":40.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cs/d3cs00419h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向工业应用方向发展电化学加氢。
电化学加氢反应作为传统热催化加氢的一种可持续和有效的替代方法,引起了人们的极大关注。本教程综述全面概述了电化学加氢反应的基本原理、实际应用和最新进展,特别强调了将这些反应从实验室规模转化为工业应用。概述了大量可想象的有机底物和测试的催化剂,我们强调了与扩大电化学加氢相关的挑战,如传质限制和反应器设计。讨论了应对这些挑战的策略和技术,包括开发新型催化剂和实施可扩展和创新的电池概念。我们进一步展望了实现电化学加氢反应广泛工业化的当前挑战、未来前景和研究方向。这项工作旨在为初学者和经验丰富的电化学工作者提供一个起点,让他们了解电化学加氢在未来的潜在转变,从实验室的好奇心转变为工业规模可持续化学合成的可行技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
Advancing super-resolution microscopy with metal complexes: functional imaging agents for nanoscale visualization MXenes in healthcare: synthesis, fundamentals and applications Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions Chemistry of lignin and condensed tannins as aromatic biopolymers New reactivity of late 3d transition metal complexes in catalytic reactions of alkynes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1