Investigating the mental health of university students during the COVID-19 pandemic in a UK university: a machine learning approach using feature permutation importance.
{"title":"Investigating the mental health of university students during the COVID-19 pandemic in a UK university: a machine learning approach using feature permutation importance.","authors":"Tianhua Chen","doi":"10.1186/s40708-023-00205-8","DOIUrl":null,"url":null,"abstract":"<p><p>Mental wellbeing of university students is a growing concern that has been worsening during the COVID-19 pandemic. Numerous studies have gathered empirical data to explore the mental health impact of the pandemic on university students and investigate factors associated with higher levels of distress. While the online questionnaire survey has been a prevalent means to collect data, regression analysis has been observed a dominating approach to interpret and understand the impact of independent factors on a mental wellbeing state of interest. Drawbacks such as sensitivity to outliers, ineffectiveness in case of multiple predictors highly correlated may limit the use of regression in complex scenarios. These observations motivate the underlying research to propose alternative computational methods to investigate the questionnaire data. Inspired by recent machine learning advances, this research aims to construct a framework through feature permutation importance to empower the application of a variety of machine learning algorithms that originate from different computational frameworks and learning theories, including algorithms that cannot directly provide exact numerical contributions of individual factors. This would enable to explore quantitative impact of predictors in influencing student mental wellbeing from multiple perspectives as a result of using different algorithms, thus complementing the single view due to the dominant use of regression. Applying the proposed approach over an online survey in a UK university, the analysis suggests the past medical record and wellbeing history and the experience of adversity contribute significantly to mental wellbeing states; and the frequent communication with families and friends to keep good relationship as well as regular exercise are generally contributing to improved mental wellbeing.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00205-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Mental wellbeing of university students is a growing concern that has been worsening during the COVID-19 pandemic. Numerous studies have gathered empirical data to explore the mental health impact of the pandemic on university students and investigate factors associated with higher levels of distress. While the online questionnaire survey has been a prevalent means to collect data, regression analysis has been observed a dominating approach to interpret and understand the impact of independent factors on a mental wellbeing state of interest. Drawbacks such as sensitivity to outliers, ineffectiveness in case of multiple predictors highly correlated may limit the use of regression in complex scenarios. These observations motivate the underlying research to propose alternative computational methods to investigate the questionnaire data. Inspired by recent machine learning advances, this research aims to construct a framework through feature permutation importance to empower the application of a variety of machine learning algorithms that originate from different computational frameworks and learning theories, including algorithms that cannot directly provide exact numerical contributions of individual factors. This would enable to explore quantitative impact of predictors in influencing student mental wellbeing from multiple perspectives as a result of using different algorithms, thus complementing the single view due to the dominant use of regression. Applying the proposed approach over an online survey in a UK university, the analysis suggests the past medical record and wellbeing history and the experience of adversity contribute significantly to mental wellbeing states; and the frequent communication with families and friends to keep good relationship as well as regular exercise are generally contributing to improved mental wellbeing.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing