Effects of Enteromorpha prolifera polysaccharides on growth performance, intestinal barrier function and cecal microbiota in yellow-feathered broilers under heat stress.
{"title":"Effects of Enteromorpha prolifera polysaccharides on growth performance, intestinal barrier function and cecal microbiota in yellow-feathered broilers under heat stress.","authors":"Wenchao Liu, Huimei Liu, Yaoyao Wang, Zhongxiang Zhao, Balamuralikrishnan Balasubramanian, Rajesh Jha","doi":"10.1186/s40104-023-00932-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Global warming leading to heat stress (HS) is becoming a major challenge for broiler production. This study aimed to explore the protective effects of seaweed (Enteromorpha prolifera) polysaccharides (EPS) on the intestinal barrier function, microbial ecology, and performance of broilers under HS. A total of 144 yellow-feathered broilers (male, 56 days old) with 682.59 ± 7.38 g were randomly assigned to 3 groups: 1) TN (thermal neutral zone, 23.6 ± 1.8 °C), 2) HS (heat stress, 33.2 ± 1.5 °C for 10 h/d), and 3) HSE (HS + 0.1% EPS). Each group contained 6 replicates with 8 broilers per replicate. The study was conducted for 4 weeks; feed intake and body weights were measured at the end of weeks 2 and 4. At the end of the feeding trial, small intestine samples were collected for histomorphology, antioxidant, secretory immunoglobulin A (sIgA) content, apoptosis, gene and protein expression analysis; cecal contents were also collected for microbiota analysis based on 16S rDNA sequencing.</p><p><strong>Results: </strong>Dietary EPS promoted the average daily gain (ADG) of broilers during 3-4 weeks of HS (P < 0.05). At the end of HS on broilers, the activity of total superoxide dismutase (T-SOD), glutathione S-transferase (GST), and the content of sIgA in jejunum were improved by EPS supplementation (P < 0.05). Besides, dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers (P < 0.05). Addition of EPS in HS group broilers' diet upregulated the relative mRNA expression of Occludin, ZO-1, γ-GCLc and IL-10 of the jejunum (P < 0.05), whereas downregulated the relative mRNA expression of NF-κB p65, TNF-α and IL-1β of the jejunum (P < 0.05). Dietary EPS increased the protein expression of Occludin and ZO-1, whereas it reduced the protein expression of NF-κB p65 and MLCK (P < 0.01) and tended to decrease the protein expression of TNF-α (P = 0.094) in heat-stressed broilers. Furthermore, the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression (P < 0.05) and negatively correlated with jejunal Occludin level (P < 0.05). However, the proportions of Lactobacillus, Barnesiella, Subdoligranulum, Megasphaera, Collinsella, and Blautia among the three groups were positively related to ADG (P < 0.05).</p><p><strong>Conclusions: </strong>EPS can be used as a feed additive in yellow-feathered broilers. It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression. These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"14 1","pages":"132"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-023-00932-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Global warming leading to heat stress (HS) is becoming a major challenge for broiler production. This study aimed to explore the protective effects of seaweed (Enteromorpha prolifera) polysaccharides (EPS) on the intestinal barrier function, microbial ecology, and performance of broilers under HS. A total of 144 yellow-feathered broilers (male, 56 days old) with 682.59 ± 7.38 g were randomly assigned to 3 groups: 1) TN (thermal neutral zone, 23.6 ± 1.8 °C), 2) HS (heat stress, 33.2 ± 1.5 °C for 10 h/d), and 3) HSE (HS + 0.1% EPS). Each group contained 6 replicates with 8 broilers per replicate. The study was conducted for 4 weeks; feed intake and body weights were measured at the end of weeks 2 and 4. At the end of the feeding trial, small intestine samples were collected for histomorphology, antioxidant, secretory immunoglobulin A (sIgA) content, apoptosis, gene and protein expression analysis; cecal contents were also collected for microbiota analysis based on 16S rDNA sequencing.
Results: Dietary EPS promoted the average daily gain (ADG) of broilers during 3-4 weeks of HS (P < 0.05). At the end of HS on broilers, the activity of total superoxide dismutase (T-SOD), glutathione S-transferase (GST), and the content of sIgA in jejunum were improved by EPS supplementation (P < 0.05). Besides, dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers (P < 0.05). Addition of EPS in HS group broilers' diet upregulated the relative mRNA expression of Occludin, ZO-1, γ-GCLc and IL-10 of the jejunum (P < 0.05), whereas downregulated the relative mRNA expression of NF-κB p65, TNF-α and IL-1β of the jejunum (P < 0.05). Dietary EPS increased the protein expression of Occludin and ZO-1, whereas it reduced the protein expression of NF-κB p65 and MLCK (P < 0.01) and tended to decrease the protein expression of TNF-α (P = 0.094) in heat-stressed broilers. Furthermore, the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression (P < 0.05) and negatively correlated with jejunal Occludin level (P < 0.05). However, the proportions of Lactobacillus, Barnesiella, Subdoligranulum, Megasphaera, Collinsella, and Blautia among the three groups were positively related to ADG (P < 0.05).
Conclusions: EPS can be used as a feed additive in yellow-feathered broilers. It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression. These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.