Field M. Watts*, Amber J. Dood, Ginger V. Shultz and Jon-Marc G. Rodriguez,
{"title":"Comparing Student and Generative Artificial Intelligence Chatbot Responses to Organic Chemistry Writing-to-Learn Assignments","authors":"Field M. Watts*, Amber J. Dood, Ginger V. Shultz and Jon-Marc G. Rodriguez, ","doi":"10.1021/acs.jchemed.3c00664","DOIUrl":null,"url":null,"abstract":"<p >Chemistry education research demonstrates the value of open-ended writing tasks, such as writing-to-learn (WTL) assignments, for supporting students’ learning with topics including reasoning about reaction mechanisms. The emergence of generative artificial intelligence (AI) technology, such as chatbots ChatGPT and Bard, raises concerns regarding the value of open-ended writing tasks in the classroom; one concern involves academic integrity and whether students will use these chatbots to produce sufficient responses to open-ended writing tasks. The present study investigates the degree to which generative AI chatbots exhibit mechanistic reasoning in response to organic chemistry WTL assignments. We produced responses from three generative AI chatbots (ChatGPT-3.5, ChatGPT-4, and Bard) to two WTL assignments developed to elicit students’ mechanistic reasoning. Using previously reported machine learning models for analyzing student writing in response to the WTL assignments, we analyzed the chatbot responses for the inclusion of features pertinent to mechanistic reasoning. Herein, we report quantitative analyses of (1) the differences between chatbot responses on the two assignments and (2) the differences between chatbot and authentic student responses. Findings indicate that chatbots respond differently to different WTL assignments. Additionally, the chatbots rarely incorporated the discussion of electron movement, a key feature of mechanistic reasoning. Furthermore, the chatbots, in general, do not engage in mechanistic reasoning at the same level as students. We contextualize the results by considering academic integrity with the assumption that students’ intentions are to engage in academically honest behavior, and we focus on understanding the ethical uses of generative AI for classroom assignments.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"3806–3817"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.3c00664","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemistry education research demonstrates the value of open-ended writing tasks, such as writing-to-learn (WTL) assignments, for supporting students’ learning with topics including reasoning about reaction mechanisms. The emergence of generative artificial intelligence (AI) technology, such as chatbots ChatGPT and Bard, raises concerns regarding the value of open-ended writing tasks in the classroom; one concern involves academic integrity and whether students will use these chatbots to produce sufficient responses to open-ended writing tasks. The present study investigates the degree to which generative AI chatbots exhibit mechanistic reasoning in response to organic chemistry WTL assignments. We produced responses from three generative AI chatbots (ChatGPT-3.5, ChatGPT-4, and Bard) to two WTL assignments developed to elicit students’ mechanistic reasoning. Using previously reported machine learning models for analyzing student writing in response to the WTL assignments, we analyzed the chatbot responses for the inclusion of features pertinent to mechanistic reasoning. Herein, we report quantitative analyses of (1) the differences between chatbot responses on the two assignments and (2) the differences between chatbot and authentic student responses. Findings indicate that chatbots respond differently to different WTL assignments. Additionally, the chatbots rarely incorporated the discussion of electron movement, a key feature of mechanistic reasoning. Furthermore, the chatbots, in general, do not engage in mechanistic reasoning at the same level as students. We contextualize the results by considering academic integrity with the assumption that students’ intentions are to engage in academically honest behavior, and we focus on understanding the ethical uses of generative AI for classroom assignments.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.