Anisotropic ZnS Nanoclusters/Ordered Macro-Microporous Carbon Superstructure for Fibrous Supercapacitor toward Commercial-Level Energy Density

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2023-05-31 DOI:10.1002/adfm.202300329
Xingjiang Wu, Xude Yu, Zekai Zhang, Hengyuan Liu, SiDa Ling, Xueyan Liu, Cheng Lian, Jianhong Xu
{"title":"Anisotropic ZnS Nanoclusters/Ordered Macro-Microporous Carbon Superstructure for Fibrous Supercapacitor toward Commercial-Level Energy Density","authors":"Xingjiang Wu,&nbsp;Xude Yu,&nbsp;Zekai Zhang,&nbsp;Hengyuan Liu,&nbsp;SiDa Ling,&nbsp;Xueyan Liu,&nbsp;Cheng Lian,&nbsp;Jianhong Xu","doi":"10.1002/adfm.202300329","DOIUrl":null,"url":null,"abstract":"<p>Fibrous supercapacitor (FSC) is of great attention in wearable electronics, but is challenged by low energy density, owing to disordered diffusion pathway and sluggish redox kinetics. Herein, using micro-reaction strategy, an anisotropic superstructure is developed by in situ anchoring ultrafine zinc sulfine (ZnS) nanoclusters on conductively ordered macro-microporous carbon skeleton via interfacial C<span></span>S<span></span>Zn bonds (ZnS/SOM-C). The anisotropic superstructure affords 3D ordered macro-microporous pathways, large accessible surfaces, and highly dispersed active sites, which exhibit enhanced electrolyte mass diffusion, rapid interfacial charge transfer, and large faradaic ions storage (capacitance of 1158 F g<sup>−1</sup> in KOH aqueous solution). By microfluidic spinning, the ZnS/SOM-C is further assembled into fibrous electrode of FSC that delivers high capacitance (791 F g<sup>−1</sup>), commercial-level energy density (172 mWh g<sup>−1</sup>), and durable stability. As a result, the FSC can realize wearable self-powered applications (e.g., self-cleaning ventilatory mask, smartwatch, and display), exhibiting the superiority in new energy and wearable industry.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 41","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202300329","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Fibrous supercapacitor (FSC) is of great attention in wearable electronics, but is challenged by low energy density, owing to disordered diffusion pathway and sluggish redox kinetics. Herein, using micro-reaction strategy, an anisotropic superstructure is developed by in situ anchoring ultrafine zinc sulfine (ZnS) nanoclusters on conductively ordered macro-microporous carbon skeleton via interfacial CSZn bonds (ZnS/SOM-C). The anisotropic superstructure affords 3D ordered macro-microporous pathways, large accessible surfaces, and highly dispersed active sites, which exhibit enhanced electrolyte mass diffusion, rapid interfacial charge transfer, and large faradaic ions storage (capacitance of 1158 F g−1 in KOH aqueous solution). By microfluidic spinning, the ZnS/SOM-C is further assembled into fibrous electrode of FSC that delivers high capacitance (791 F g−1), commercial-level energy density (172 mWh g−1), and durable stability. As a result, the FSC can realize wearable self-powered applications (e.g., self-cleaning ventilatory mask, smartwatch, and display), exhibiting the superiority in new energy and wearable industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于纤维超级电容器的各向异性ZnS纳米团簇/有序宏微孔碳超结构迈向商业级能量密度
纤维超级电容器(FSC)在可穿戴电子产品中备受关注,但由于扩散途径紊乱和氧化还原动力学缓慢,其能量密度低。本文采用微反应策略,通过界面C将超细硫化锌(ZnS)纳米团簇原位锚定在导电有序的宏观微孔碳骨架上,形成了各向异性的超结构SZn键(ZnS/SOM-C)。各向异性超结构提供了三维有序的宏观微孔通道、大的可接近表面和高度分散的活性位点,这些活性位点表现出增强的电解质质量扩散、快速的界面电荷转移和大的法拉第离子存储(在KOH水溶液中的电容为1158 F g−1)。通过微流体纺丝,ZnS/SOM-C进一步组装成FSC的纤维电极,该电极具有高电容(791 F g−1)、商业级能量密度(172 mWh g−1。因此,FSC可以实现可穿戴自供电应用(如自清洁通气面罩、智能手表和显示器),在新能源和可穿戴行业中显示出优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Issue Information Stepwise Vacancy Manipulation for Optimized Carrier Concentration and Blocked Phonon Transport Realizing Record High Figure of Merit zT in CuInTe2 Evidence for Topological States and a Lifshitz Transition in Metastable 2M-WSe2 Advancements in Functionalizable Metal-Organic Frameworks for Flexible Sensing Electronics Nonvolatile Memristor Based on WS2/WSe2 van der Waals Heterostructure with Tunable Interlayer Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1