Altitude profile of the OH radical complex with water in Earth’s atmosphere: a quantum mechanical approach

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Journal of Atmospheric Chemistry Pub Date : 2017-01-03 DOI:10.1007/s10874-016-9353-5
David Voglozin, Paul Cooper
{"title":"Altitude profile of the OH radical complex with water in Earth’s atmosphere: a quantum mechanical approach","authors":"David Voglozin,&nbsp;Paul Cooper","doi":"10.1007/s10874-016-9353-5","DOIUrl":null,"url":null,"abstract":"<p>The hydroxyl radical (OH) is important in both tropospheric and stratospheric chemical processes that occur in Earth’s atmosphere. The OH radical can also strongly hydrogen-bond to form complexes with other atmospheric constituents, like water molecules. Consequently, there is potential for altered reaction dynamics/kinetics as a result of this complexation. Without direct measurements of the abundances of such complexes in Earth’s atmosphere, we have adopted a theoretical approach to determine such abundances. Electronic structures, enthalpies and free Gibbs energies of formation of OH, H<sub>2</sub>O and H<sub>2</sub>O-HO were calculated at CCSD(T) and QCISD(T) levels of theory with either 6–311++G(2d,2p) or aug-cc-pVTZ basis. Statistical thermodynamic concepts were then used to assess the abundance of the complex as function of altitude.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"74 4","pages":"475 - 489"},"PeriodicalIF":3.0000,"publicationDate":"2017-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-016-9353-5","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-016-9353-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

The hydroxyl radical (OH) is important in both tropospheric and stratospheric chemical processes that occur in Earth’s atmosphere. The OH radical can also strongly hydrogen-bond to form complexes with other atmospheric constituents, like water molecules. Consequently, there is potential for altered reaction dynamics/kinetics as a result of this complexation. Without direct measurements of the abundances of such complexes in Earth’s atmosphere, we have adopted a theoretical approach to determine such abundances. Electronic structures, enthalpies and free Gibbs energies of formation of OH, H2O and H2O-HO were calculated at CCSD(T) and QCISD(T) levels of theory with either 6–311++G(2d,2p) or aug-cc-pVTZ basis. Statistical thermodynamic concepts were then used to assess the abundance of the complex as function of altitude.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地球大气中氢氧根配合物与水的高度分布:量子力学方法
羟基自由基(OH)在地球大气中发生的对流层和平流层化学过程中都是重要的。OH自由基还能与其他大气成分(如水分子)形成强氢键,形成络合物。因此,由于这种络合,有可能改变反应动力学/动力学。由于没有直接测量地球大气中这种复合物的丰度,我们采用了一种理论方法来确定这种丰度。以6-311 ++G(2d,2p)或8 -cc- pvtz为基,在CCSD(T)和QCISD(T)理论能级上计算OH、H2O和H2O- ho的电子结构、焓和自由吉布斯生成能。然后使用统计热力学概念来评估复合体的丰度作为海拔的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
期刊最新文献
Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran Characteristics of surface air quality over provincial capital cities in Northwestern China during 2013–2020 Stable isotopic, bulk, and molecular compositions of post-monsoon biomass-burning aerosols in Delhi suggest photochemical ageing during regional transport is more pronounced than local processing A review on sequential extraction of metals bound particulate matter and their health risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1