Primer Exchange Reaction (PER)–Based Construction of Scaffold for Low-Speed Centrifugation–Based Isolation and Quantitative Analysis of P. aeruginosa and its application in analyzing uterine secretions with intrauterine adhesion

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2023-10-11 DOI:10.1007/s12010-023-04742-0
Boping Yang, Ying Wang, Xiaohuan Yan, Qian Fen, Yugang Chi
{"title":"Primer Exchange Reaction (PER)–Based Construction of Scaffold for Low-Speed Centrifugation–Based Isolation and Quantitative Analysis of P. aeruginosa and its application in analyzing uterine secretions with intrauterine adhesion","authors":"Boping Yang,&nbsp;Ying Wang,&nbsp;Xiaohuan Yan,&nbsp;Qian Fen,&nbsp;Yugang Chi","doi":"10.1007/s12010-023-04742-0","DOIUrl":null,"url":null,"abstract":"<p>Efficient isolation and sensitive quantification of <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) are crucial for identifying intrauterine infections and preventing the occurrence of intrauterine adhesion (IUA). However, traditional approaches, such as culture-based approach, are time-consuming. Herein, we constructed a detection scaffold by using primer exchange reaction (PER) that integrated the low-speed centrifugation–based isolation and sensitive quantification of target pathogenic bacteria. The established approach possesses several advantages, including (i) the approach is capable of simultaneous isolation and sensitive quantification of target bacteria; (ii) low-speed centrifugation or even manual equipment could be used to isolate target bacteria; and (iii) a low limit of detection was obtained as 54 cfu/mL. Based on this, the approach is a promising approach in analyzing <i>P. aeruginosa</i> from uterine secretions with IUA.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":"196 7","pages":"4038 - 4048"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12010-023-04742-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient isolation and sensitive quantification of Pseudomonas aeruginosa (P. aeruginosa) are crucial for identifying intrauterine infections and preventing the occurrence of intrauterine adhesion (IUA). However, traditional approaches, such as culture-based approach, are time-consuming. Herein, we constructed a detection scaffold by using primer exchange reaction (PER) that integrated the low-speed centrifugation–based isolation and sensitive quantification of target pathogenic bacteria. The established approach possesses several advantages, including (i) the approach is capable of simultaneous isolation and sensitive quantification of target bacteria; (ii) low-speed centrifugation or even manual equipment could be used to isolate target bacteria; and (iii) a low limit of detection was obtained as 54 cfu/mL. Based on this, the approach is a promising approach in analyzing P. aeruginosa from uterine secretions with IUA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于引物交换反应(PER)的铜绿假单胞菌低速离心分离定量分析支架的构建及其在宫腔粘连子宫分泌物分析中的应用。
铜绿假单胞菌的有效分离和灵敏定量对于识别宫内感染和预防宫内粘连(IUA)的发生至关重要。然而,传统的方法,如基于文化的方法,是耗时的。在此,我们利用引物交换反应(PER)构建了一种检测支架,该支架集成了基于低速离心的目标致病菌分离和灵敏定量。所建立的方法具有几个优点,包括(i)该方法能够同时分离和灵敏地定量目标细菌;(ii)可以使用低速离心或甚至手动设备来分离目标细菌;以及(iii)检测下限为54cfu/mL。基于此,该方法是一种很有前途的分析IUA子宫分泌物中铜绿假单胞菌的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
Cold Plasma Treatment Facilitated the Conversion of Lignin-Derived Aldehyde for Pseudomonas putida. E2F1 Promotes the Occurrence of Head and Neck Squamous Cell Carcinoma and Serves as a Prognostic Biomarker. Field-Based cDNA-Biosensor for Accurate Detection of Canine Distemper Virus in Tissue Samples. Activation of Cryptic Secondary Metabolite Biosynthesis in Tobacco BY-2 Suspension Cells by Epigenetic Modifiers. Retraction Note: Diterpene Coronarin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Both In Vivo and In Vitro Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1