The Mg doping ZIF-8 loaded with Icariin and its antibacterial and osteogenic performances

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Materials Science: Materials in Medicine Pub Date : 2023-10-12 DOI:10.1007/s10856-023-06755-x
Lili Li, Jianghui Zhao, Fengcang Ma, Daihua He, Ping Liu, Wei Li, Ke Zhang, Xiaohong Chen, Lin Song
{"title":"The Mg doping ZIF-8 loaded with Icariin and its antibacterial and osteogenic performances","authors":"Lili Li,&nbsp;Jianghui Zhao,&nbsp;Fengcang Ma,&nbsp;Daihua He,&nbsp;Ping Liu,&nbsp;Wei Li,&nbsp;Ke Zhang,&nbsp;Xiaohong Chen,&nbsp;Lin Song","doi":"10.1007/s10856-023-06755-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, ICA@Mg-ZIF-8 was synthesized by Mg doping in ZIF-8 and loaded with icariin (ICA). The morphologies and phases were observed and analyzed by SEM, XRD, and the release behaviors of Mg, Zn ions and ICA were tested. Its antibacterial and mineralization performances were evaluated. The results showed that ICA@Mg-ZIF-8 has the same morphology and crystal structure as ZIF-8. ICA@Mg-ZIF-8 showed enhanced antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, and the antibacterial rate was increased to 87.7 % and 64.0 %, respectively. The results of in vitro mineralization showed that ICA@Mg-ZIF-8 presented better osteogenic performance promoting the uniform deposition of more calcium and phosphorus in simulated body fluids compared to ZIF-8.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-023-06755-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, ICA@Mg-ZIF-8 was synthesized by Mg doping in ZIF-8 and loaded with icariin (ICA). The morphologies and phases were observed and analyzed by SEM, XRD, and the release behaviors of Mg, Zn ions and ICA were tested. Its antibacterial and mineralization performances were evaluated. The results showed that ICA@Mg-ZIF-8 has the same morphology and crystal structure as ZIF-8. ICA@Mg-ZIF-8 showed enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus, and the antibacterial rate was increased to 87.7 % and 64.0 %, respectively. The results of in vitro mineralization showed that ICA@Mg-ZIF-8 presented better osteogenic performance promoting the uniform deposition of more calcium and phosphorus in simulated body fluids compared to ZIF-8.

Graphical Abstract

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁掺杂的载Icariin的ZIF-8及其抗菌和成骨性能。
在本研究中,ICA@Mg-ZIF-8通过在ZIF-8中掺杂镁来合成,并负载了icariin(ICA)。通过SEM、XRD对其形貌和相进行了观察和分析,并测试了Mg、Zn离子和ICA的释放行为。对其抗菌和矿化性能进行了评价。结果表明:ICA@Mg-ZIF-8具有与ZIF-8相同的形态和晶体结构。ICA@Mg-ZIF-8对大肠杆菌和金黄色葡萄球菌的抗菌活性增强,抗菌率分别提高到87.7%和64.0%。体外矿化结果表明:ICA@Mg-ZIF-8与ZIF-8相比,ZIF-8具有更好的成骨性能,促进了模拟体液中更多钙和磷的均匀沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
期刊最新文献
Performance evaluation of a low-cost Ti-Mo-Fe (TMF8) as a replacement for Ti-6Al-4V for internal fixation implants used in mandibular angular fractures: a finite element analysis study Biocompatibility and antibacterial properties of medical stainless steel and titanium modified by alumina and hafnia films prepared by atomic layer deposition Nano-titanium coating on glass surface to improve platelet-rich fibrin (PRF) quality Enhancing osteogenesis and mandibular defect repair with magnesium-modified acellular bovine bone matrix Shear bond strength between dental adhesive systems and an experimental niobium-based implant material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1