TEST FOR HIGH DIMENSIONAL CORRELATION MATRICES.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2019-10-01 Epub Date: 2019-08-03 DOI:10.1214/18-AOS1768
Shurong Zheng, Guanghui Cheng, Jianhua Guo, Hongtu Zhu
{"title":"TEST FOR HIGH DIMENSIONAL CORRELATION MATRICES.","authors":"Shurong Zheng,&nbsp;Guanghui Cheng,&nbsp;Jianhua Guo,&nbsp;Hongtu Zhu","doi":"10.1214/18-AOS1768","DOIUrl":null,"url":null,"abstract":"<p><p>Testing correlation structures has attracted extensive attention in the literature due to both its importance in real applications and several major theoretical challenges. The aim of this paper is to develop a general framework of testing correlation structures for the one-, two-, and multiple sample testing problems under a high-dimensional setting when both the sample size and data dimension go to infinity. Our test statistics are designed to deal with both the dense and sparse alternatives. We systematically investigate the asymptotic null distribution, power function, and unbiasedness of each test statistic. Theoretically, we make great efforts to deal with the non-independency of all random matrices of the sample correlation matrices. We use simulation studies and real data analysis to illustrate the versatility and practicability of our test statistics.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/18-AOS1768","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOS1768","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 18

Abstract

Testing correlation structures has attracted extensive attention in the literature due to both its importance in real applications and several major theoretical challenges. The aim of this paper is to develop a general framework of testing correlation structures for the one-, two-, and multiple sample testing problems under a high-dimensional setting when both the sample size and data dimension go to infinity. Our test statistics are designed to deal with both the dense and sparse alternatives. We systematically investigate the asymptotic null distribution, power function, and unbiasedness of each test statistic. Theoretically, we make great efforts to deal with the non-independency of all random matrices of the sample correlation matrices. We use simulation studies and real data analysis to illustrate the versatility and practicability of our test statistics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维相关矩阵的测试。
测试相关结构由于其在实际应用中的重要性和几个主要的理论挑战,在文献中引起了广泛的关注。本文的目的是为高维环境下的一个、两个和多个样本测试问题开发一个测试相关性结构的通用框架,当样本大小和数据维度都达到无穷大时。我们的测试统计数据旨在处理密集和稀疏的备选方案。我们系统地研究了每个检验统计量的渐近零分布、幂函数和无偏性。从理论上讲,我们努力处理样本相关矩阵的所有随机矩阵的非独立性。我们使用模拟研究和实际数据分析来说明我们的测试统计的通用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1