Pub Date : 2024-06-01Epub Date: 2024-08-11DOI: 10.1214/24-aos2378
Bingxin Zhao, Shurong Zheng, Hongtu Zhu
Genetic prediction holds immense promise for translating genetic discoveries into medical advances. As the high-dimensional covariance matrix (or the linkage disequilibrium (LD) pattern) of genetic variants often presents a block-diagonal structure, numerous methods account for the dependence among variants in predetermined local LD blocks. Moreover, due to privacy considerations and data protection concerns, genetic variant dependence in each LD block is typically estimated from external reference panels rather than the original training data set. This paper presents a unified analysis of blockwise and reference panel-based estimators in a high-dimensional prediction framework without sparsity restrictions. We find that, surprisingly, even when the covariance matrix has a block-diagonal structure with well-defined boundaries, blockwise estimation methods adjusting for local dependence can be substantially less accurate than methods controlling for the whole covariance matrix. Further, estimation methods built on the original training data set and external reference panels are likely to have varying performance in high dimensions, which may reflect the cost of having only access to summary level data from the training data set. This analysis is based on novel results in random matrix theory for block-diagonal covariance matrix. We numerically evaluate our results using extensive simulations and real data analysis in the UK Biobank.
{"title":"ON BLOCKWISE AND REFERENCE PANEL-BASED ESTIMATORS FOR GENETIC DATA PREDICTION IN HIGH DIMENSIONS.","authors":"Bingxin Zhao, Shurong Zheng, Hongtu Zhu","doi":"10.1214/24-aos2378","DOIUrl":"10.1214/24-aos2378","url":null,"abstract":"<p><p>Genetic prediction holds immense promise for translating genetic discoveries into medical advances. As the high-dimensional covariance matrix (or the linkage disequilibrium (LD) pattern) of genetic variants often presents a block-diagonal structure, numerous methods account for the dependence among variants in predetermined local LD blocks. Moreover, due to privacy considerations and data protection concerns, genetic variant dependence in each LD block is typically estimated from external reference panels rather than the original training data set. This paper presents a unified analysis of blockwise and reference panel-based estimators in a high-dimensional prediction framework without sparsity restrictions. We find that, surprisingly, even when the covariance matrix has a block-diagonal structure with well-defined boundaries, blockwise estimation methods adjusting for local dependence can be substantially less accurate than methods controlling for the whole covariance matrix. Further, estimation methods built on the original training data set and external reference panels are likely to have varying performance in high dimensions, which may reflect the cost of having only access to summary level data from the training data set. This analysis is based on novel results in random matrix theory for block-diagonal covariance matrix. We numerically evaluate our results using extensive simulations and real data analysis in the UK Biobank.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"52 3","pages":"948-965"},"PeriodicalIF":3.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-05-09DOI: 10.1214/24-aos2369
Edward H Kennedy, Sivaraman Balakrishnan, James M Robins, Larry Wasserman
Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.
估算异质性因果效应--即政策和治疗方法的效应如何在不同受试者之间发生变化--是因果推断中的一项基本任务。近年来,人们提出了许多估计条件平均治疗效果(CATE)的方法,但围绕最优性的问题在很大程度上仍未得到解答。特别是,关于最优性的最小理论尚待发展,最小收敛率和最优率估计器的构建仍是悬而未决的问题。在本文中,我们在一个荷尔德平滑非参数模型中推导出了 CATE 估计的最小率,并提出了一个新的局部多项式估计器,给出了它是最小最优估计器的高级条件。我们的最小值下界是通过模糊假设方法的本地化版本推导出来的,结合了非参数回归和函数估计的下界构造。我们提出的估计器可以看作是基于高阶影响函数方法局部修正的局部多项式 R 学习器。我们发现的最小率具有几个有趣的特征,包括非标准的肘部现象和非参数回归与函数估计率之间不寻常的插值。后者量化了作为估算对象的 CATE 如何被视为回归/函数混合体。
{"title":"Minimax rates for heterogeneous causal effect estimation.","authors":"Edward H Kennedy, Sivaraman Balakrishnan, James M Robins, Larry Wasserman","doi":"10.1214/24-aos2369","DOIUrl":"10.1214/24-aos2369","url":null,"abstract":"<p><p>Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"52 2","pages":"793-816"},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143762600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-03-07DOI: 10.1214/23-aos2339
Yeqing Zhou, Kai Xu, Liping Zhu, Runze Li
To test independence between two high-dimensional random vectors, we propose three tests based on the rank-based indices derived from Hoeffding's , Blum-Kiefer-Rosenblatt's and Bergsma-Dassios-Yanagimoto's . Under the null hypothesis of independence, we show that the distributions of the proposed test statistics converge to normal ones if the dimensions diverge arbitrarily with the sample size. We further derive an explicit rate of convergence. Thanks to the monotone transformation-invariant property, these distribution-free tests can be readily used to generally distributed random vectors including heavily tailed ones. We further study the local power of the proposed tests and compare their relative efficiencies with two classic distance covariance/correlation based tests in high dimensional settings. We establish explicit relationships between and Pearson's correlation for bivariate normal random variables. The relationships serve as a basis for power comparison. Our theoretical results show that under a Gaussian equicorrelation alternative, (i) the proposed tests are superior to the two classic distance covariance/correlation based tests if the components of random vectors have very different scales; (ii) the asymptotic efficiency of the proposed tests based on and are sorted in a descending order.
为了检验两个高维随机向量之间的独立性,我们提出了三种检验方法,分别基于从霍夫丁的 D、布卢姆-基弗-罗森布拉特的 R 和贝格斯马-达西奥斯-扬纳基莫托的τ* 得出的基于秩的指数。在独立性的零假设下,我们证明了如果维数随样本量任意发散,所提出的检验统计量的分布会收敛到正态分布。我们进一步推导出了明确的收敛率。得益于单调变换不变的特性,这些无分布检验可以很容易地用于一般分布的随机向量,包括重尾向量。我们进一步研究了所提出检验的局部功率,并比较了它们与两种基于距离协方差/相关性的经典检验在高维环境下的相对效率。我们在双变量正态随机变量的 D、R、τ* 和皮尔逊相关性之间建立了明确的关系。这些关系可作为功率比较的基础。我们的理论结果表明,在高斯等相关性替代条件下,(i) 如果随机向量的分量具有非常不同的尺度,所提出的检验优于基于距离协方差/相关性的两种经典检验;(ii) 基于 D、τ* 和 R 所提出的检验的渐进效率按降序排列。
{"title":"RANK-BASED INDICES FOR TESTING INDEPENDENCE BETWEEN TWO HIGH-DIMENSIONAL VECTORS.","authors":"Yeqing Zhou, Kai Xu, Liping Zhu, Runze Li","doi":"10.1214/23-aos2339","DOIUrl":"10.1214/23-aos2339","url":null,"abstract":"<p><p>To test independence between two high-dimensional random vectors, we propose three tests based on the rank-based indices derived from Hoeffding's <math><mi>D</mi></math>, Blum-Kiefer-Rosenblatt's <math><mi>R</mi></math> and Bergsma-Dassios-Yanagimoto's <math><msup><mrow><mi>τ</mi></mrow><mrow><mo>*</mo></mrow></msup></math>. Under the null hypothesis of independence, we show that the distributions of the proposed test statistics converge to normal ones if the dimensions diverge arbitrarily with the sample size. We further derive an explicit rate of convergence. Thanks to the monotone transformation-invariant property, these distribution-free tests can be readily used to generally distributed random vectors including heavily tailed ones. We further study the local power of the proposed tests and compare their relative efficiencies with two classic distance covariance/correlation based tests in high dimensional settings. We establish explicit relationships between <math><mi>D</mi><mo>,</mo><mi>R</mi><mo>,</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>*</mo></mrow></msup></math> and Pearson's correlation for bivariate normal random variables. The relationships serve as a basis for power comparison. Our theoretical results show that under a Gaussian equicorrelation alternative, (i) the proposed tests are superior to the two classic distance covariance/correlation based tests if the components of random vectors have very different scales; (ii) the asymptotic efficiency of the proposed tests based on <math><mi>D</mi><mo>,</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>*</mo></mrow></msup></math> and <math><mi>R</mi></math> are sorted in a descending order.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"52 1","pages":"184-206"},"PeriodicalIF":3.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of the order in which a set of m treatments is applied can be modeled by relative-position factors that indicate whether treatment i is carried out before or after treatment j, or by the absolute position for treatment i in the sequence. A design with the same normalized information matrix as the design with all m! sequences is D- and G-optimal for the main-effects model involving the relative-position factors. We prove that such designs are also I-optimal for this model and D-optimal as well as G- and I-optimal for the first-order model in the absolute-position factors. We propose a methodology for a complete or partial enumeration of nonequivalent designs that are optimal for both models.
{"title":"Order-of-addition orthogonal arrays to study the effect of treatment ordering","authors":"Eric D. Schoen, Robert W. Mee","doi":"10.1214/23-aos2317","DOIUrl":"https://doi.org/10.1214/23-aos2317","url":null,"abstract":"The effect of the order in which a set of m treatments is applied can be modeled by relative-position factors that indicate whether treatment i is carried out before or after treatment j, or by the absolute position for treatment i in the sequence. A design with the same normalized information matrix as the design with all m! sequences is D- and G-optimal for the main-effects model involving the relative-position factors. We prove that such designs are also I-optimal for this model and D-optimal as well as G- and I-optimal for the first-order model in the absolute-position factors. We propose a methodology for a complete or partial enumeration of nonequivalent designs that are optimal for both models.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.
{"title":"Matching recovery threshold for correlated random graphs","authors":"Jian Ding, Hang Du","doi":"10.1214/23-aos2305","DOIUrl":"https://doi.org/10.1214/23-aos2305","url":null,"abstract":"For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We analyze the extreme value dependence of independent, not necessarily identically distributed multivariate regularly varying random vectors. More specifically, we propose estimators of the spectral measure locally at some time point and of the spectral measures integrated over time. The uniform asymptotic normality of these estimators is proved under suitable nonparametric smoothness and regularity assumptions. We then use the process convergence of the integrated spectral measure to devise consistent tests for the null hypothesis that the spectral measure does not change over time.
{"title":"Statistical inference on a changing extreme value dependence structure","authors":"Holger Drees","doi":"10.1214/23-aos2314","DOIUrl":"https://doi.org/10.1214/23-aos2314","url":null,"abstract":"We analyze the extreme value dependence of independent, not necessarily identically distributed multivariate regularly varying random vectors. More specifically, we propose estimators of the spectral measure locally at some time point and of the spectral measures integrated over time. The uniform asymptotic normality of these estimators is proved under suitable nonparametric smoothness and regularity assumptions. We then use the process convergence of the integrated spectral measure to devise consistent tests for the null hypothesis that the spectral measure does not change over time.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When the target of statistical inference is chosen in a data-driven manner, the guarantees provided by classical theories vanish. We propose a solution to the problem of inference after selection by building on the framework of algorithmic stability, in particular its branch with origins in the field of differential privacy. Stability is achieved via randomization of selection and it serves as a quantitative measure that is sufficient to obtain nontrivial post-selection corrections for classical confidence intervals. Importantly, the underpinnings of algorithmic stability translate directly into computational efficiency—our method computes simple corrections for selective inference without recourse to Markov chain Monte Carlo sampling.
{"title":"Post-selection inference via algorithmic stability","authors":"Tijana Zrnic, Michael I. Jordan","doi":"10.1214/23-aos2303","DOIUrl":"https://doi.org/10.1214/23-aos2303","url":null,"abstract":"When the target of statistical inference is chosen in a data-driven manner, the guarantees provided by classical theories vanish. We propose a solution to the problem of inference after selection by building on the framework of algorithmic stability, in particular its branch with origins in the field of differential privacy. Stability is achieved via randomization of selection and it serves as a quantitative measure that is sufficient to obtain nontrivial post-selection corrections for classical confidence intervals. Importantly, the underpinnings of algorithmic stability translate directly into computational efficiency—our method computes simple corrections for selective inference without recourse to Markov chain Monte Carlo sampling.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135165184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Factor and sparse models are widely used to impose a low-dimensional structure in high-dimensions. However, they are seemingly mutually exclusive. We propose a lifting method that combines the merits of these two models in a supervised learning methodology that allows for efficiently exploring all the information in high-dimensional datasets. The method is based on a flexible model for high-dimensional panel data with observable and/or latent common factors and idiosyncratic components. The model is called the factor-augmented regression model. It includes principal components and sparse regression as specific models, significantly weakens the cross-sectional dependence, and facilitates model selection and interpretability. The method consists of several steps and a novel test for (partial) covariance structure in high dimensions to infer the remaining cross-section dependence at each step. We develop the theory for the model and demonstrate the validity of the multiplier bootstrap for testing a high-dimensional (partial) covariance structure. A simulation study and applications support the theory.
{"title":"Bridging factor and sparse models","authors":"Jianqing Fan, Ricardo Masini, Marcelo C. Medeiros","doi":"10.1214/23-aos2304","DOIUrl":"https://doi.org/10.1214/23-aos2304","url":null,"abstract":"Factor and sparse models are widely used to impose a low-dimensional structure in high-dimensions. However, they are seemingly mutually exclusive. We propose a lifting method that combines the merits of these two models in a supervised learning methodology that allows for efficiently exploring all the information in high-dimensional datasets. The method is based on a flexible model for high-dimensional panel data with observable and/or latent common factors and idiosyncratic components. The model is called the factor-augmented regression model. It includes principal components and sparse regression as specific models, significantly weakens the cross-sectional dependence, and facilitates model selection and interpretability. The method consists of several steps and a novel test for (partial) covariance structure in high dimensions to infer the remaining cross-section dependence at each step. We develop the theory for the model and demonstrate the validity of the multiplier bootstrap for testing a high-dimensional (partial) covariance structure. A simulation study and applications support the theory.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134951962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Off-policy evaluation is considered a fundamental and challenging problem in reinforcement learning (RL). This paper focuses on value estimation of a target policy based on pre-collected data generated from a possibly different policy, under the framework of infinite-horizon Markov decision processes. Motivated by the recently developed marginal importance sampling method in RL and the covariate balancing idea in causal inference, we propose a novel estimator with approximately projected state-action balancing weights for the policy value estimation. We obtain the convergence rate of these weights, and show that the proposed value estimator is asymptotically normal under technical conditions. In terms of asymptotics, our results scale with both the number of trajectories and the number of decision points at each trajectory. As such, consistency can still be achieved with a limited number of subjects when the number of decision points diverges. In addition, we develop a necessary and sufficient condition for establishing the well-posedness of the operator that relates to the nonparametric Q-function estimation in the off-policy setting, which characterizes the difficulty of Q-function estimation and may be of independent interest. Numerical experiments demonstrate the promising performance of our proposed estimator.
{"title":"Projected state-action balancing weights for offline reinforcement learning","authors":"Jiayi Wang, Zhengling Qi, Raymond K. W. Wong","doi":"10.1214/23-aos2302","DOIUrl":"https://doi.org/10.1214/23-aos2302","url":null,"abstract":"Off-policy evaluation is considered a fundamental and challenging problem in reinforcement learning (RL). This paper focuses on value estimation of a target policy based on pre-collected data generated from a possibly different policy, under the framework of infinite-horizon Markov decision processes. Motivated by the recently developed marginal importance sampling method in RL and the covariate balancing idea in causal inference, we propose a novel estimator with approximately projected state-action balancing weights for the policy value estimation. We obtain the convergence rate of these weights, and show that the proposed value estimator is asymptotically normal under technical conditions. In terms of asymptotics, our results scale with both the number of trajectories and the number of decision points at each trajectory. As such, consistency can still be achieved with a limited number of subjects when the number of decision points diverges. In addition, we develop a necessary and sufficient condition for establishing the well-posedness of the operator that relates to the nonparametric Q-function estimation in the off-policy setting, which characterizes the difficulty of Q-function estimation and may be of independent interest. Numerical experiments demonstrate the promising performance of our proposed estimator.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper formulates a general cross-validation framework for signal denoising. The general framework is then applied to nonparametric regression methods such as trend filtering and dyadic CART. The resulting cross-validated versions are then shown to attain nearly the same rates of convergence as are known for the optimally tuned analogues. There did not exist any previous theoretical analyses of cross-validated versions of trend filtering or dyadic CART. To illustrate the generality of the framework, we also propose and study cross-validated versions of two fundamental estimators; lasso for high-dimensional linear regression and singular value thresholding for matrix estimation. Our general framework is inspired by the ideas in Chatterjee and Jafarov (2015) and is potentially applicable to a wide range of estimation methods which use tuning parameters.
{"title":"A cross-validation framework for signal denoising with applications to trend filtering, dyadic CART and beyond","authors":"Anamitra Chaudhuri, Sabyasachi Chatterjee","doi":"10.1214/23-aos2283","DOIUrl":"https://doi.org/10.1214/23-aos2283","url":null,"abstract":"This paper formulates a general cross-validation framework for signal denoising. The general framework is then applied to nonparametric regression methods such as trend filtering and dyadic CART. The resulting cross-validated versions are then shown to attain nearly the same rates of convergence as are known for the optimally tuned analogues. There did not exist any previous theoretical analyses of cross-validated versions of trend filtering or dyadic CART. To illustrate the generality of the framework, we also propose and study cross-validated versions of two fundamental estimators; lasso for high-dimensional linear regression and singular value thresholding for matrix estimation. Our general framework is inspired by the ideas in Chatterjee and Jafarov (2015) and is potentially applicable to a wide range of estimation methods which use tuning parameters.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}