The multifaceted role of mitochondria in HSC fate decisions: energy and beyond

IF 2.5 4区 医学 Q2 HEMATOLOGY Experimental hematology Pub Date : 2023-12-01 DOI:10.1016/j.exphem.2023.10.001
Marie-Dominique Filippi
{"title":"The multifaceted role of mitochondria in HSC fate decisions: energy and beyond","authors":"Marie-Dominique Filippi","doi":"10.1016/j.exphem.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into all-mature blood cell lineages. The fate decisions to generate progeny that retain stemness properties or that commit to differentiation is a fundamental process to maintain tissue homeostasis and must be tightly regulated to prevent HSC overgrowth or exhaustion. HSC fate decisions are inherently coupled to cell division. The transition from quiescence to activation is accompanied by major metabolic and mitochondrial changes that are important for cell cycle entry and for balanced decisions between self-renewal and differentiation. In this review, we discuss the current understanding of the role of mitochondrial metabolism in HSC transition from quiescence to activation and fate decisions.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"128 ","pages":"Pages 19-29"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301472X23017368","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into all-mature blood cell lineages. The fate decisions to generate progeny that retain stemness properties or that commit to differentiation is a fundamental process to maintain tissue homeostasis and must be tightly regulated to prevent HSC overgrowth or exhaustion. HSC fate decisions are inherently coupled to cell division. The transition from quiescence to activation is accompanied by major metabolic and mitochondrial changes that are important for cell cycle entry and for balanced decisions between self-renewal and differentiation. In this review, we discuss the current understanding of the role of mitochondrial metabolism in HSC transition from quiescence to activation and fate decisions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体在HSC命运决定中的多方面作用:能量和超越。
造血干细胞具有自我更新和/或分化为所有成熟血细胞谱系的特性。产生保持干性特性或致力于分化的后代的命运决定是维持组织稳态的基本过程,必须严格调节以防止HSC过度生长或衰竭。HSC的命运决定本质上与细胞分裂有关。从静止到激活的转变伴随着主要的代谢和线粒体变化,这些变化对于细胞周期的进入对于自我更新和分化之间的平衡决策很重要。在这篇综述中,我们讨论了目前对线粒体代谢在HSC从静止过渡到激活和命运决定中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental hematology
Experimental hematology 医学-血液学
CiteScore
5.30
自引率
0.00%
发文量
84
审稿时长
58 days
期刊介绍: Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.
期刊最新文献
FT-4202, a selective pyruvate kinase R activator for sickle cell disease. Structural diversity and function of the granulocyte colony-stimulating factor in medaka fish. Platelet ultrastructural changes stored at room temperature versus cold storage observed by electron microscopy and structured illumination microscopy. Efficacy and safety of avatrombopag in combination with standard immunosuppressive therapy for severe aplastic anemia Inducible pluripotent stem cell models to study bone marrow failure and MDS predisposition syndromes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1