Pub Date : 2024-11-14DOI: 10.1016/j.exphem.2024.104673
Anna Ericsson, David J Richard, Erik Wilker, Jr David R Lancia, Shawn Fessler, Paul Troccolo, Xiaozhang Zheng, Angela Toms, Christopher Dinsmore, Lili Yao, Frans A Kuypers, Sandra Larkin, Douglas Marcotte, Keertik Fulzele, Maria Ribadeneira, Sylvie M Guichard, Gary Marshall
Anemia in patients with sickle cell disease (SCD) increases 2,3-diphosphoglycerate (2,3-DPG), decreasing hemoglobin-oxygen (Hb-O2) affinity to improve oxygen offloading and promote hemoglobin polymerization (sickling) of red blood cells (RBCs). We report the discovery of FT-4202, an investigational, selective pyruvate kinase type-R (PKR) activator with a multimodal mechanism of action and potential to increase ATP and decrease 2,3-DPG, resulting in increased Hb-O2 affinity, decreased Hb polymerization, and improved RBC health. FT-4202 was identified via structure-enabled lead optimization medicinal chemistry using X-ray crystallography, molecular modeling, and thermal shift assays. FT-4202, an allosteric PKR activator, stabilizes the tetrameric enzyme and increases PKR activity in human and mouse RBCs in vitro. Seven-day oral administration of FT-4202 in Berkeley SCD mice reduced 2,3-DPG, increased Hb-O2 affinity, and reduced RBC sickling versus control. There were no adverse in vitro safety findings. FT-4202 offers a therapeutic opportunity to modify the course of SCD.
镰状细胞病(SCD)患者贫血会增加 2,3-二磷酸甘油酯(2,3-DPG),降低血红蛋白与氧(Hb-O2)的亲和力,从而改善氧负荷并促进红细胞(RBC)的血红蛋白聚合(镰状细胞)。我们报告发现了 FT-4202,它是一种研究性、选择性丙酮酸激酶-R 型(PKR)激活剂,具有多模式作用机制,可增加 ATP 和减少 2,3-DPG,从而增加 Hb-O2 亲和力、减少 Hb 聚合和改善红细胞健康。FT-4202 是利用 X 射线晶体学、分子建模和热位移测定法,通过结构先导优化药物化学鉴定出来的。FT-4202 是一种异位 PKR 激活剂,它能稳定四聚体酶并提高体外人和小鼠红细胞中 PKR 的活性。与对照组相比,伯克利SCD小鼠口服FT-4202七天可降低2,3-DPG,增加Hb-O2亲和力,并减少红细胞镰状病变。体外安全性方面没有发现任何不良反应。FT-4202 为改变 SCD 病程提供了治疗机会。
{"title":"FT-4202, a selective pyruvate kinase R activator for sickle cell disease.","authors":"Anna Ericsson, David J Richard, Erik Wilker, Jr David R Lancia, Shawn Fessler, Paul Troccolo, Xiaozhang Zheng, Angela Toms, Christopher Dinsmore, Lili Yao, Frans A Kuypers, Sandra Larkin, Douglas Marcotte, Keertik Fulzele, Maria Ribadeneira, Sylvie M Guichard, Gary Marshall","doi":"10.1016/j.exphem.2024.104673","DOIUrl":"https://doi.org/10.1016/j.exphem.2024.104673","url":null,"abstract":"<p><p>Anemia in patients with sickle cell disease (SCD) increases 2,3-diphosphoglycerate (2,3-DPG), decreasing hemoglobin-oxygen (Hb-O<sub>2</sub>) affinity to improve oxygen offloading and promote hemoglobin polymerization (sickling) of red blood cells (RBCs). We report the discovery of FT-4202, an investigational, selective pyruvate kinase type-R (PKR) activator with a multimodal mechanism of action and potential to increase ATP and decrease 2,3-DPG, resulting in increased Hb-O<sub>2</sub> affinity, decreased Hb polymerization, and improved RBC health. FT-4202 was identified via structure-enabled lead optimization medicinal chemistry using X-ray crystallography, molecular modeling, and thermal shift assays. FT-4202, an allosteric PKR activator, stabilizes the tetrameric enzyme and increases PKR activity in human and mouse RBCs in vitro. Seven-day oral administration of FT-4202 in Berkeley SCD mice reduced 2,3-DPG, increased Hb-O<sub>2</sub> affinity, and reduced RBC sickling versus control. There were no adverse in vitro safety findings. FT-4202 offers a therapeutic opportunity to modify the course of SCD.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104673"},"PeriodicalIF":2.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diversity in the granulocyte repertoire, including neutrophils, basophils, and eosinophils, has been reported in vertebrate species. Medaka fish (Oryzias latipes) have only neutrophils; however, the storage pool of granulopoiesis tissues and the molecular mechanism of granulopoiesis in medaka fish have not been explored. Granulocyte colony-stimulating factor (G-CSF) is a cytokine responsible for neutrophil differentiation, survival, and proliferation. We performed in silico analysis to molecularly characterize the medaka G-CSF and G-CSF receptor (G-CSFR) genes. This study showed that medaka G-CSF differs considerably from human and mouse G-CSF in terms of the primary protein structure; however, the predicted tertiary structure was largely conserved. Analyses of lipopolysaccharide stimulation and G-CSF knockout and overexpression in medaka revealed that G-CSF mobilizes neutrophils into the peripheral blood. The analysis of G-CSF-deficient medaka revealed that G-CSF is involved in erythropoiesis. These findings represent an important first step toward understanding granulocyte hematopoiesis in non-mammalian species.
{"title":"Structural diversity and function of the granulocyte colony-stimulating factor in medaka fish.","authors":"Ayame Ogawa, Shungo Konno, Satoshi Ansai, Kiyoshi Naruse, Takashi Kato","doi":"10.1016/j.exphem.2024.104672","DOIUrl":"https://doi.org/10.1016/j.exphem.2024.104672","url":null,"abstract":"<p><p>Diversity in the granulocyte repertoire, including neutrophils, basophils, and eosinophils, has been reported in vertebrate species. Medaka fish (Oryzias latipes) have only neutrophils; however, the storage pool of granulopoiesis tissues and the molecular mechanism of granulopoiesis in medaka fish have not been explored. Granulocyte colony-stimulating factor (G-CSF) is a cytokine responsible for neutrophil differentiation, survival, and proliferation. We performed in silico analysis to molecularly characterize the medaka G-CSF and G-CSF receptor (G-CSFR) genes. This study showed that medaka G-CSF differs considerably from human and mouse G-CSF in terms of the primary protein structure; however, the predicted tertiary structure was largely conserved. Analyses of lipopolysaccharide stimulation and G-CSF knockout and overexpression in medaka revealed that G-CSF mobilizes neutrophils into the peripheral blood. The analysis of G-CSF-deficient medaka revealed that G-CSF is involved in erythropoiesis. These findings represent an important first step toward understanding granulocyte hematopoiesis in non-mammalian species.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104672"},"PeriodicalIF":2.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Our study seeks to provide a theoretical foundation for the clinical use of Cold-stored platelets (CSPs) by interpreting ultrastructural images and quantitatively analyzing structural changes. CSPs, room temperature-stored platelets (RTPs), and delayed cold stored platelets(Delayed-CSPs) were continuously observed using scanning electron microscopy and transmission electron microscopy at 8 time points. Super-resolution fluorescence microscopy was employed to observe changes in platelet microtubules and mitochondrial structure and function, while platelet counts, metabolism, and relevant functional indicators were measured concurrently. Quantitative statistical analysis of platelet size, morphology, canalicular systems, and five organelles was performed under electron microscopy. CSPs stored for 1 day, platelet shape changed from circular or elliptical to spherical, with size decreasing from 2.8 × 2.2µm to 2.0 × 2.0µm. CSPs occurred wrinkling and reorganization of platelet microtubule proteins, with organelles aggregating towards the central region. CSPs stored for 14 days and Delayed-CSPs for 10 days exhibited numerous structurally intact and active cells. The structure-intact active cells in both group were 92% . RTPs stored for 5 and 7 days showed minimal changes in size, a normal microtubule skeleton, and were primarily in a resting state. However, RTPs stored for 10 and 14 days displayed swelling, irregular disintegration of the microtubule skeleton, and the presence of membranous structures and vacuolated cells,the structure-intact active cells was only 45% and 7%, respectively. Our findings confirmed that the maximum storage time of platelets was 5-7 days for RTPs, within 10 days for Delayed-CSPs, and 14 days for CSPs.
{"title":"Platelet ultrastructural changes stored at room temperature versus cold storage observed by electron microscopy and structured illumination microscopy.","authors":"Yang Sun, Shunli Gu, Yan Ma, Aowei Song, Lili Xing, Jiameng Niu, Ru Yang, Xiaoyu Hu, Wenhua Wang, Ting Ma, Fenfang Tian, Liqin Wang, Xinxin Xie, Xiaofeng Huang, Wen Yin, Jiangcun Yang","doi":"10.1016/j.exphem.2024.104671","DOIUrl":"https://doi.org/10.1016/j.exphem.2024.104671","url":null,"abstract":"<p><p>Our study seeks to provide a theoretical foundation for the clinical use of Cold-stored platelets (CSPs) by interpreting ultrastructural images and quantitatively analyzing structural changes. CSPs, room temperature-stored platelets (RTPs), and delayed cold stored platelets(Delayed-CSPs) were continuously observed using scanning electron microscopy and transmission electron microscopy at 8 time points. Super-resolution fluorescence microscopy was employed to observe changes in platelet microtubules and mitochondrial structure and function, while platelet counts, metabolism, and relevant functional indicators were measured concurrently. Quantitative statistical analysis of platelet size, morphology, canalicular systems, and five organelles was performed under electron microscopy. CSPs stored for 1 day, platelet shape changed from circular or elliptical to spherical, with size decreasing from 2.8 × 2.2µm to 2.0 × 2.0µm. CSPs occurred wrinkling and reorganization of platelet microtubule proteins, with organelles aggregating towards the central region. CSPs stored for 14 days and Delayed-CSPs for 10 days exhibited numerous structurally intact and active cells. The structure-intact active cells in both group were 92% . RTPs stored for 5 and 7 days showed minimal changes in size, a normal microtubule skeleton, and were primarily in a resting state. However, RTPs stored for 10 and 14 days displayed swelling, irregular disintegration of the microtubule skeleton, and the presence of membranous structures and vacuolated cells,the structure-intact active cells was only 45% and 7%, respectively. Our findings confirmed that the maximum storage time of platelets was 5-7 days for RTPs, within 10 days for Delayed-CSPs, and 14 days for CSPs.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104671"},"PeriodicalIF":2.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.exphem.2024.104670
Jianping Li , Weiru Liang , Huihui Fan , Kang Zhou , Yuan Li , Wenrui Yang , Liping Jing , Li Zhang , Lei Ye , Youzhen Xiong , Guangxin Peng , Yang Yang , Weiping Yuan , Jun Shi , Fengkui Zhang , Xin Zhao
Severe aplastic anemia (SAA) is a life-threatening bone marrow failure disease. The addition of eltrombopag to immunosuppressive therapy (IST) improves the response rate, but its hepatotoxicity is concerning. Avatrombopag (AVA), a small-molecule thrombopoietin-receptor agonist without hepatotoxicity, has unknown efficacy in SAA treatment. This retrospective study assessed the efficacy and safety of AVA added to IST 42 SAA patients compared to a historical cohort of 84 patients receiving IST alone, using propensity score matching. The median age was 31.5 (6.0–67.0 years) years old in group A and 26 (16.0–45.0 years) years old in group B. At 3 months, group A showed higher complete response (CR) and overall response (OR) rates than group B (CR: 19.0% vs. 4.8%, p = 0.024; OR: 54.8% vs. 39.3%, p = 0.145). Higher CR and OR rates were also found at 6 months in group A than in group B (CR: 31.0% vs. 14.3%, p = 0.145; OR 71.4% vs. 51.2%, p = 0.048). In multivariate analysis of group A, a shorter interval from disease onset to antithymocyte globulin (ATG) treatment (≤6 months) (p = 0.005) predicted better responses rate at 6 months. Event-free survival was also improved in group A (60.7% vs. 49.6%). AVA was well-tolerated, with no hepatic injury observed during treatment, even in those with pre-existing hepatic impairment. The addition of AVA to IST improves both the response rate and response quality in patients with SAA while ensuring safety.
重型再生障碍性贫血(SAA)是一种危及生命的骨髓衰竭疾病。在免疫抑制疗法(IST)中加入艾曲波帕能提高再生障碍性贫血的应答率和应答质量,但其肝毒性令人担忧。阿瓦曲波帕(AVA)是另一种无肝脏毒性的小分子血小板生成素受体激动剂,但其在 SAA 治疗中的疗效尚不清楚。这项回顾性研究旨在评估小分子血小板生成素受体激动剂 AVA 加入 IST 治疗 SAA 患者的疗效和安全性。研究利用倾向评分匹配法,将接受 IST 和 AVA 治疗的 42 例患者与单独接受 IST 治疗的 84 例患者进行了比较。3 个月后,A 组的完全应答率(CR)和总应答率(OR)高于 B 组(CR:19.0% 对 4.8%,P=0.024;OR:54.8% 对 39.3%,P=0.145)。6 个月时,A 组的 CR 和 OR 率也高于 B 组(CR:31.0% 对 14.3%,P=0.145;OR:71.4% 对 51.2%,P=0.048)。在对A组的多变量分析中,从发病到接受抗胸腺细胞球蛋白(ATG)治疗的时间间隔越短(≤6个月)(P=0.005),6个月时的应答率就越高。A组的无事件生存率也有所提高(60.7% 对 49.6%)。AVA 的耐受性良好,在治疗过程中未观察到肝损伤,即使是那些原本就存在肝损伤的患者也是如此。在 IST 中加入 AVA 可提高 SAA 患者的应答率和应答质量,同时确保安全性。
{"title":"Efficacy and safety of avatrombopag in combination with standard immunosuppressive therapy for severe aplastic anemia","authors":"Jianping Li , Weiru Liang , Huihui Fan , Kang Zhou , Yuan Li , Wenrui Yang , Liping Jing , Li Zhang , Lei Ye , Youzhen Xiong , Guangxin Peng , Yang Yang , Weiping Yuan , Jun Shi , Fengkui Zhang , Xin Zhao","doi":"10.1016/j.exphem.2024.104670","DOIUrl":"10.1016/j.exphem.2024.104670","url":null,"abstract":"<div><div>Severe aplastic anemia (SAA) is a life-threatening bone marrow failure disease. The addition of eltrombopag to immunosuppressive therapy (IST) improves the response rate, but its hepatotoxicity is concerning. Avatrombopag (AVA), a small-molecule thrombopoietin-receptor agonist without hepatotoxicity, has unknown efficacy in SAA treatment. This retrospective study assessed the efficacy and safety of AVA added to IST 42 SAA patients compared to a historical cohort of 84 patients receiving IST alone, using propensity score matching. The median age was 31.5 (6.0–67.0 years) years old in group A and 26 (16.0–45.0 years) years old in group B. At 3 months, group A showed higher complete response (CR) and overall response (OR) rates than group B (CR: 19.0% vs. 4.8%, <em>p</em> = 0.024; OR: 54.8% vs. 39.3%, <em>p</em> = 0.145). Higher CR and OR rates were also found at 6 months in group A than in group B (CR: 31.0% vs. 14.3%, <em>p</em> = 0.145; OR 71.4% vs. 51.2%, <em>p</em> = 0.048). In multivariate analysis of group A, a shorter interval from disease onset to antithymocyte globulin (ATG) treatment (≤6 months) (<em>p</em> = 0.005) predicted better responses rate at 6 months. Event-free survival was also improved in group A (60.7% vs. 49.6%). AVA was well-tolerated, with no hepatic injury observed during treatment, even in those with pre-existing hepatic impairment. The addition of AVA to IST improves both the response rate and response quality in patients with SAA while ensuring safety.</div></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"140 ","pages":"Article 104670"},"PeriodicalIF":2.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.exphem.2024.104667
Vu L. Tran , Myriam L.R. Haltalli , Jingjing Li , Dawn S. Lin , Masayuki Yamashita , Shalin H. Naik , Ellen V. Rothenberg
Lymphocytes play a critical role in adaptive immunity and defense mechanisms, but the molecular mechanisms by which hematopoietic stem and progenitor cells differentiate into T and B lymphocytes are not fully established. Pioneer studies identify several transcription factors essential for lymphoid lineage determination. Yet, many questions remain unanswered about how these transcription factors interact with each other and with chromatin at different developmental stages. This interaction regulates a network of genes and proteins, promoting lymphoid lineage differentiation while suppressing other lineages. Throughout this intricate biological process, any genetic or epigenetic interruptions can derail normal differentiation trajectories, potentially leading to various human pathologic conditions. Here, we summarize recent advances in understanding lymphoid cell development, which was the focus of the Winter 2024 International Society for Experimental Hematology webinar.
淋巴细胞在适应性免疫和防御机制中发挥着关键作用,但造血干细胞和祖细胞分化成 T 淋巴细胞和 B 淋巴细胞的分子机制尚未完全确定。先驱研究发现了几种对淋巴细胞系决定至关重要的转录因子。然而,关于这些转录因子在不同发育阶段如何相互影响以及如何与染色质相互作用,许多问题仍未得到解答。这种相互作用调节着基因和蛋白质网络,在促进淋巴系分化的同时抑制其他系的分化。在这一错综复杂的生物过程中,任何遗传或表观遗传干扰都可能破坏正常的分化轨迹,从而可能导致各种人类病症。在此,我们总结了了解淋巴细胞发育的最新进展,这也是 2024 年冬季国际实验血液学会网络研讨会的重点。
{"title":"Ever-evolving insights into the cellular and molecular drivers of lymphoid cell development","authors":"Vu L. Tran , Myriam L.R. Haltalli , Jingjing Li , Dawn S. Lin , Masayuki Yamashita , Shalin H. Naik , Ellen V. Rothenberg","doi":"10.1016/j.exphem.2024.104667","DOIUrl":"10.1016/j.exphem.2024.104667","url":null,"abstract":"<div><div>Lymphocytes play a critical role in adaptive immunity and defense mechanisms, but the molecular mechanisms by which hematopoietic stem and progenitor cells differentiate into T and B lymphocytes are not fully established. Pioneer studies identify several transcription factors essential for lymphoid lineage determination. Yet, many questions remain unanswered about how these transcription factors interact with each other and with chromatin at different developmental stages. This interaction regulates a network of genes and proteins, promoting lymphoid lineage differentiation while suppressing other lineages. Throughout this intricate biological process, any genetic or epigenetic interruptions can derail normal differentiation trajectories, potentially leading to various human pathologic conditions. Here, we summarize recent advances in understanding lymphoid cell development, which was the focus of the Winter 2024 International Society for Experimental Hematology webinar.</div></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"140 ","pages":"Article 104667"},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.exphem.2024.104655
Hannah M. Maul-Newby, Stephanie Halene
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases.
In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
{"title":"Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis","authors":"Hannah M. Maul-Newby, Stephanie Halene","doi":"10.1016/j.exphem.2024.104655","DOIUrl":"10.1016/j.exphem.2024.104655","url":null,"abstract":"<div><div>Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in <em>cis</em> has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases.</div><div>In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.</div></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"140 ","pages":"Article 104655"},"PeriodicalIF":2.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis.
In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment.
In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
{"title":"Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions","authors":"Luca Guarnera , Enrico Santinelli , Elisa Galossi , Antonio Cristiano , Emiliano Fabiani , Giulia Falconi , Maria Teresa Voso","doi":"10.1016/j.exphem.2023.09.005","DOIUrl":"10.1016/j.exphem.2023.09.005","url":null,"abstract":"<div><p>Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis.</p><p>In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment.</p><p>In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"129 ","pages":"Article 104118"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301472X23017058/pdfft?md5=01d45253098251d7824d4d8b8d687693&pid=1-s2.0-S0301472X23017058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41106676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.exphem.2023.10.002
Shi Chen , Gayathri Srinivasan , Aruna Jaiswal , Elizabeth A. Williamson , Lingxiao Li , Dominic Arris , Daohong Zhou , Mingjiang Xu , Robert Hromas
When hematopoietic cells are overwhelmed with ionizing radiation (IR) DNA damage, the alternative non-homologous end-joining (aNHEJ) repair pathway is activated to repair stressed replication forks. While aNHEJ can rescue cells overwhelmed with DNA damage, it can also mediate chromosomal deletions and fusions, which can cause mis-segregation in mitosis and resultant aneuploidy. We previously reported that a hematopoietic microRNA, miR-223-3p, normally represses aNHEJ. We found that miR-223−/− mice have increased survival of hematopoietic stem and progenitor cells (HSPCs) after sublethal IR. However, this came at the cost of significantly more genomic aberrancies, with miR-223−/− hematopoietic progenitors having increased metaphase aberrancies, including chromothripsis, and increased sequence abnormalities, especially deletions, which is consistent with aNHEJ. These data imply that when an HSPC is faced with substantial DNA damage, it may trade genomic damage for its own survival by choosing the aNHEJ repair pathway, and this choice is regulated in part by miR-223-3p.
{"title":"MiR-223-3p promotes genomic stability of hematopoietic progenitors after radiation","authors":"Shi Chen , Gayathri Srinivasan , Aruna Jaiswal , Elizabeth A. Williamson , Lingxiao Li , Dominic Arris , Daohong Zhou , Mingjiang Xu , Robert Hromas","doi":"10.1016/j.exphem.2023.10.002","DOIUrl":"10.1016/j.exphem.2023.10.002","url":null,"abstract":"<div><p>When hematopoietic cells are overwhelmed with ionizing radiation (IR) DNA damage, the alternative non-homologous end-joining (aNHEJ) repair pathway is activated to repair stressed replication forks. While aNHEJ can rescue cells overwhelmed with DNA damage, it can also mediate chromosomal deletions and fusions, which can cause mis-segregation in mitosis and resultant aneuploidy. We previously reported that a hematopoietic microRNA, miR-223-3p, normally represses aNHEJ. We found that miR-223<sup>−/−</sup> mice have increased survival of hematopoietic stem and progenitor cells (HSPCs) after sublethal IR. However, this came at the cost of significantly more genomic aberrancies, with miR-223<sup>−/−</sup> hematopoietic progenitors having increased metaphase aberrancies, including chromothripsis, and increased sequence abnormalities, especially deletions, which is consistent with aNHEJ. These data imply that when an HSPC is faced with substantial DNA damage, it may trade genomic damage for its own survival by choosing the aNHEJ repair pathway, and this choice is regulated in part by miR-223-3p.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"129 ","pages":"Article 104123"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301472X2301737X/pdfft?md5=afb05969a5e4bb740dd86dc3ec469d7c&pid=1-s2.0-S0301472X2301737X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50157376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1016/j.exphem.2023.09.008
Katharina Schönberger, Nina Cabezas-Wallscheid
Our dietary choices significantly impact all the cells in our body. Increasing evidence suggests that diet-derived metabolites influence hematopoietic stem cell (HSC) metabolism and function, thereby actively modulating blood homeostasis. This is of particular relevance because regulating the metabolic activity of HSCs is crucial for maintaining stem cell fitness and mitigating the risk of hematologic disorders. In this review, we examine the current scientific knowledge of the impact of diet on stemness features, and we specifically highlight the established mechanisms by which dietary components modulate metabolic and transcriptional programs in adult HSCs. Gaining a deeper understanding of how nutrition influences our HSC compartment may pave the way for targeted dietary interventions with the potential to decelerate aging and improve the effectiveness of transplantation and cancer therapies.
{"title":"How nutrition regulates hematopoietic stem cell features","authors":"Katharina Schönberger, Nina Cabezas-Wallscheid","doi":"10.1016/j.exphem.2023.09.008","DOIUrl":"10.1016/j.exphem.2023.09.008","url":null,"abstract":"<div><p>Our dietary choices significantly impact all the cells in our body. Increasing evidence suggests that diet-derived metabolites influence hematopoietic stem cell (HSC) metabolism and function, thereby actively modulating blood homeostasis. This is of particular relevance because regulating the metabolic activity of HSCs is crucial for maintaining stem cell fitness and mitigating the risk of hematologic disorders. In this review, we examine the current scientific knowledge of the impact of diet on stemness features, and we specifically highlight the established mechanisms by which dietary components modulate metabolic and transcriptional programs in adult HSCs. Gaining a deeper understanding of how nutrition influences our HSC compartment may pave the way for targeted dietary interventions with the potential to decelerate aging and improve the effectiveness of transplantation and cancer therapies.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"128 ","pages":"Pages 10-18"},"PeriodicalIF":2.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301472X23017356/pdfft?md5=a01b2622fa3f9a2190295e5aa97873d5&pid=1-s2.0-S0301472X23017356-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41195978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1016/j.exphem.2023.10.001
Marie-Dominique Filippi
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into all-mature blood cell lineages. The fate decisions to generate progeny that retain stemness properties or that commit to differentiation is a fundamental process to maintain tissue homeostasis and must be tightly regulated to prevent HSC overgrowth or exhaustion. HSC fate decisions are inherently coupled to cell division. The transition from quiescence to activation is accompanied by major metabolic and mitochondrial changes that are important for cell cycle entry and for balanced decisions between self-renewal and differentiation. In this review, we discuss the current understanding of the role of mitochondrial metabolism in HSC transition from quiescence to activation and fate decisions.
{"title":"The multifaceted role of mitochondria in HSC fate decisions: energy and beyond","authors":"Marie-Dominique Filippi","doi":"10.1016/j.exphem.2023.10.001","DOIUrl":"10.1016/j.exphem.2023.10.001","url":null,"abstract":"<div><p>Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into all-mature blood cell lineages. The fate decisions to generate progeny that retain stemness properties or that commit to differentiation is a fundamental process to maintain tissue homeostasis and must be tightly regulated to prevent HSC overgrowth or exhaustion. HSC fate decisions are inherently coupled to cell division. The transition from quiescence to activation is accompanied by major metabolic and mitochondrial changes that are important for cell cycle entry and for balanced decisions between self-renewal and differentiation. In this review, we discuss the current understanding of the role of mitochondrial metabolism in HSC transition from quiescence to activation and fate decisions.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"128 ","pages":"Pages 19-29"},"PeriodicalIF":2.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41195979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}