Persistent topological Laplacian analysis of SARS-CoV-2 variants.

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Biophysics and Chemistry Pub Date : 2023-08-01 Epub Date: 2023-06-08 DOI:10.1142/s2737416523500278
Xiaoqi Wei, Jiahui Chen, Guo-Wei Wei
{"title":"Persistent topological Laplacian analysis of SARS-CoV-2 variants.","authors":"Xiaoqi Wei, Jiahui Chen, Guo-Wei Wei","doi":"10.1142/s2737416523500278","DOIUrl":null,"url":null,"abstract":"<p><p>Topological data analysis (TDA) is an emerging field in mathematics and data science. Its central technique, persistent homology, has had tremendous success in many science and engineering disciplines. However, persistent homology has limitations, including its inability to handle heterogeneous information, such as multiple types of geometric objects; being qualitative rather than quantitative, e.g., counting a 5-member ring the same as a 6-member ring, and a failure to describe non-topological changes, such as homotopic changes in protein-protein binding. Persistent topological Laplacians (PTLs), such as persistent Laplacian and persistent sheaf Laplacian, were proposed to overcome the limitations of persistent homology. In this work, we examine the modeling and analysis power of PTLs in the study of the protein structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor binding domain (RBD). First, we employ PTLs to study how the RBD mutation-induced structural changes of RBD-angiotensin-converting enzyme 2 (ACE2) binding complexes are captured in the changes of spectra of the PTLs among SARS-CoV-2 variants. Additionally, we use PTLs to analyze the binding of RBD and ACE2-induced structural changes of various SARS-CoV-2 variants. Finally, we explore the impacts of computationally generated RBD structures on a topological deep learning paradigm and predictions of deep mutational scanning datasets for the SARS-CoV-2 Omicron BA.2 variant. Our results indicate that PTLs have advantages over persistent homology in analyzing protein structural changes and provide a powerful new TDA tool for data science.</p>","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":"22 5","pages":"569-587"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569362/pdf/nihms-1888545.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biophysics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737416523500278","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological data analysis (TDA) is an emerging field in mathematics and data science. Its central technique, persistent homology, has had tremendous success in many science and engineering disciplines. However, persistent homology has limitations, including its inability to handle heterogeneous information, such as multiple types of geometric objects; being qualitative rather than quantitative, e.g., counting a 5-member ring the same as a 6-member ring, and a failure to describe non-topological changes, such as homotopic changes in protein-protein binding. Persistent topological Laplacians (PTLs), such as persistent Laplacian and persistent sheaf Laplacian, were proposed to overcome the limitations of persistent homology. In this work, we examine the modeling and analysis power of PTLs in the study of the protein structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor binding domain (RBD). First, we employ PTLs to study how the RBD mutation-induced structural changes of RBD-angiotensin-converting enzyme 2 (ACE2) binding complexes are captured in the changes of spectra of the PTLs among SARS-CoV-2 variants. Additionally, we use PTLs to analyze the binding of RBD and ACE2-induced structural changes of various SARS-CoV-2 variants. Finally, we explore the impacts of computationally generated RBD structures on a topological deep learning paradigm and predictions of deep mutational scanning datasets for the SARS-CoV-2 Omicron BA.2 variant. Our results indicate that PTLs have advantages over persistent homology in analyzing protein structural changes and provide a powerful new TDA tool for data science.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
严重急性呼吸系统综合征冠状病毒2型变异株的持久拓扑拉普拉斯分析。
拓扑数据分析是数学和数据科学中的一个新兴领域。它的核心技术,持久同源性,在许多科学和工程学科中取得了巨大成功。然而,持久同源性有局限性,包括它无法处理异构信息,例如多种类型的几何对象;是定性的而不是定量的,例如,计数与6元环相同的5元环,以及未能描述非拓扑变化,例如蛋白质-蛋白质结合的同源性变化。为了克服持久同调的局限性,提出了持久拓扑拉普拉斯算子,如持久拉普拉斯算子和持久sheaf拉普拉斯算子。在这项工作中,我们检验了PTL在研究严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)刺突受体结合结构域(RBD)的蛋白质结构中的建模和分析能力。首先,我们使用PTL来研究RBD突变诱导的RBD血管紧张素转换酶2(ACE2)结合复合物的结构变化是如何在严重急性呼吸系统综合征冠状病毒2变种的PTL光谱变化中被捕获的。此外,我们使用PTL来分析RBD和ACE2的结合诱导的各种严重急性呼吸系统综合征冠状病毒2变种的结构变化。最后,我们探讨了计算生成的RBD结构对拓扑深度学习范式的影响,以及对严重急性呼吸系统综合征冠状病毒2型奥密克戎BA.2变体的深度突变扫描数据集的预测。我们的结果表明,在分析蛋白质结构变化方面,PTL比持久同源性具有优势,并为数据科学提供了一种强大的新TDA工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
9.10%
发文量
62
期刊最新文献
Computational approach to identify the Key Genes for Invasive Lobular Carcinoma (ILC) Diagnosis and Therapies The Juxtaposition of Allosteric and Catalytic Inhibition in PLK1: Tradeoff for Chemotherapy and Thermodynamic Profiles of KBJK557 and BI 6727 Molecular Dynamics Study on the Binding Characteristics and Transport Mechanism of Polysaccharides with Different Molecular Weights in Camellia Oleifera Abel Fragment-Based Protein Structure Prediction, Where Are We Now? Antifibromyalgic activity of Phytomolecule Niranthin: In-Vivo analysis, Molecular docking, Dynamics and DFT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1