{"title":"In Vitro and In Vivo Characterisation of Lactiplantibacillus plantarum LAB12 in Pea Protein-Alginate Microcapsules.","authors":"Muhamad Fareez Ismail, Siong Meng Lim, Fei Tieng Lim, Kalavathy Ramasamy","doi":"10.1007/s12602-023-10171-6","DOIUrl":null,"url":null,"abstract":"<p><p>The susceptibility of probiotics to high temperature and low pH remains a major challenge in food industries. Numerous commercially available probiotic products were reportedly presented with lower probiotic viability than claimed. To confer health benefits to the host, it is essential that probiotic strain remains viable at optimal amount during food processing procedures, storage and passage through the gastrointestinal tract. This study addressed these issues by immobilising Lactiplantibacillus plantarum LAB12 isolated from tempeh (fermented soybean) in a polymeric matrix made up of alginate (Alg, 0.5% w/v) and denatured pea protein isolate (PPi, 1-10% w/v) using the emulsion/acidification technique. Alg supplemented with 10% PPi (Alg-PPi10) appeared to be optimally small (< 350 µm), substantiated by the improved surface smoothness and uniform dispersion of probiotics in the Alg-PPi core. The findings indicated that microencapsulation enhanced thermal stability of L. plantarum LAB12. The microencapsulated L. plantarum LAB12 remained highly viable (80%) despite exposure to 100 °C for 5 min. The microencapsulated cell number during storage at 4 and 25 °C for 8 weeks was greater than 7 log CFU g<sup>-1</sup>. L. plantarum LAB12 encapsulated in Alg-PPi10 exhibited high viability (96%) in simulated gastric juice (at pH 1.8 for 120 min) and facilitated maximum release of probiotics (> 9 log CFU g<sup>-1</sup>) in simulated intestinal fluid (at pH 6.8 for 240 min). Whilst retaining their intrinsic cholesterol lowering effect, microencapsulation conferred additional advantages to L. plantarum LAB12 in terms of lowering serum triglyceride and increasing HDL cholesterol in zebrafish fed with high-cholesterol diet (HCD). Overall, our findings strongly imply the potential use of Alg-PPi10 as an effective medium that confers thermal protection and facilitates pH-sensitive release of cholesterol-reducing L. plantarum LAB12. This will allow the diverse applications L. plantarum LAB12 across health, food and agro-feed industries amongst others.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"569-587"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-023-10171-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The susceptibility of probiotics to high temperature and low pH remains a major challenge in food industries. Numerous commercially available probiotic products were reportedly presented with lower probiotic viability than claimed. To confer health benefits to the host, it is essential that probiotic strain remains viable at optimal amount during food processing procedures, storage and passage through the gastrointestinal tract. This study addressed these issues by immobilising Lactiplantibacillus plantarum LAB12 isolated from tempeh (fermented soybean) in a polymeric matrix made up of alginate (Alg, 0.5% w/v) and denatured pea protein isolate (PPi, 1-10% w/v) using the emulsion/acidification technique. Alg supplemented with 10% PPi (Alg-PPi10) appeared to be optimally small (< 350 µm), substantiated by the improved surface smoothness and uniform dispersion of probiotics in the Alg-PPi core. The findings indicated that microencapsulation enhanced thermal stability of L. plantarum LAB12. The microencapsulated L. plantarum LAB12 remained highly viable (80%) despite exposure to 100 °C for 5 min. The microencapsulated cell number during storage at 4 and 25 °C for 8 weeks was greater than 7 log CFU g-1. L. plantarum LAB12 encapsulated in Alg-PPi10 exhibited high viability (96%) in simulated gastric juice (at pH 1.8 for 120 min) and facilitated maximum release of probiotics (> 9 log CFU g-1) in simulated intestinal fluid (at pH 6.8 for 240 min). Whilst retaining their intrinsic cholesterol lowering effect, microencapsulation conferred additional advantages to L. plantarum LAB12 in terms of lowering serum triglyceride and increasing HDL cholesterol in zebrafish fed with high-cholesterol diet (HCD). Overall, our findings strongly imply the potential use of Alg-PPi10 as an effective medium that confers thermal protection and facilitates pH-sensitive release of cholesterol-reducing L. plantarum LAB12. This will allow the diverse applications L. plantarum LAB12 across health, food and agro-feed industries amongst others.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.