How fish consumption prevents the development of Major Depressive Disorder? A comprehensive review of the interplay between n-3 PUFAs, LTP and BDNF

IF 14 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Progress in lipid research Pub Date : 2023-10-09 DOI:10.1016/j.plipres.2023.101254
Łukasz Kołodziej , Piotr Lech Czarny , Sylwia Ziółkowska , Katarzyna Białek , Janusz Szemraj , Piotr Gałecki , Kuan-Pin Su , Tomasz Śliwiński
{"title":"How fish consumption prevents the development of Major Depressive Disorder? A comprehensive review of the interplay between n-3 PUFAs, LTP and BDNF","authors":"Łukasz Kołodziej ,&nbsp;Piotr Lech Czarny ,&nbsp;Sylwia Ziółkowska ,&nbsp;Katarzyna Białek ,&nbsp;Janusz Szemraj ,&nbsp;Piotr Gałecki ,&nbsp;Kuan-Pin Su ,&nbsp;Tomasz Śliwiński","doi":"10.1016/j.plipres.2023.101254","DOIUrl":null,"url":null,"abstract":"<div><p>MDD (major depressive disorder) is a highly prevalent mental disorder with a complex etiology involving behavioral and neurochemical factors as well as environmental stress. The interindividual variability in response to stress stimuli may be explained by processes such as long-term potentiation (LTP) and long-term depression (LTD). LTP can be described as the strengthening of synaptic transmission, which translates into more efficient cognitive performance and is regulated by brain-derived neurotrophic factor (BDNF), a protein responsible for promoting neural growth. It is found in high concentrations in the hippocampus, a part of the limbic system which is far less active in people with MDD. Omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) not only contribute to structural and antioxidative functions but are essential for the maintenance of LTP and stable BDNF levels. This review explores the mechanisms and potential roles of omega-3 fatty acids in the prevention of MDD.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"92 ","pages":"Article 101254"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782723000449","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MDD (major depressive disorder) is a highly prevalent mental disorder with a complex etiology involving behavioral and neurochemical factors as well as environmental stress. The interindividual variability in response to stress stimuli may be explained by processes such as long-term potentiation (LTP) and long-term depression (LTD). LTP can be described as the strengthening of synaptic transmission, which translates into more efficient cognitive performance and is regulated by brain-derived neurotrophic factor (BDNF), a protein responsible for promoting neural growth. It is found in high concentrations in the hippocampus, a part of the limbic system which is far less active in people with MDD. Omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) not only contribute to structural and antioxidative functions but are essential for the maintenance of LTP and stable BDNF levels. This review explores the mechanisms and potential roles of omega-3 fatty acids in the prevention of MDD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鱼类消费如何预防严重抑郁症的发展?n-3 PUFA、LTP和BDNF之间相互作用的全面综述。
MDD(重性抑郁障碍)是一种高度流行的精神障碍,其病因复杂,涉及行为和神经化学因素以及环境压力。个体对压力刺激反应的变异性可以用长时程增强(LTP)和长期抑郁(LTD)等过程来解释。LTP可以被描述为突触传递的增强,这转化为更有效的认知表现,并受到脑源性神经营养因子(BDNF)的调节,BDNF是一种负责促进神经生长的蛋白质。它在海马体中高浓度存在,海马体是MDD患者的边缘系统的一部分,其活性要低得多。ω-3脂肪酸,如二十碳五烯酸(EPA)和二十二碳六烯酸(DHA),不仅有助于结构和抗氧化功能,而且对维持LTP和稳定的BDNF水平至关重要。这篇综述探讨了ω-3脂肪酸在预防MDD中的机制和潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in lipid research
Progress in lipid research 生物-生化与分子生物学
CiteScore
24.50
自引率
2.20%
发文量
37
审稿时长
14.6 weeks
期刊介绍: The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.
期刊最新文献
How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting Increasing oil content in Brassica oilseed species Long chain polyunsaturated fatty acid (LC-PUFA) composition of fish sperm: nexus of dietary, evolutionary, and biomechanical drivers Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1