Tobias Ebert, Friedrich M Götz, Lars Mewes, P Jason Rentfrow
{"title":"Spatial analysis for psychologists: How to use individual-level data for research at the geographically aggregated level.","authors":"Tobias Ebert, Friedrich M Götz, Lars Mewes, P Jason Rentfrow","doi":"10.1037/met0000493","DOIUrl":null,"url":null,"abstract":"<p><p>Psychologists have become increasingly interested in the geographical organization of psychological phenomena. Such studies typically seek to identify geographical variation in psychological characteristics and examine the causes and consequences of that variation. Geo-psychological research offers unique advantages, such as a wide variety of easily obtainable behavioral outcomes. However, studies at the geographically aggregate level also come with unique challenges that require psychologists to work with unfamiliar data formats, sources, measures, and statistical problems. The present article aims to present psychologists with a methodological roadmap that equips them with basic analytical techniques for geographical analysis. Across five sections, we provide a step-by-step tutorial and walk readers through a full geo-psychological research project. We provide guidance for (a) choosing an appropriate geographical level and aggregating individual data, (b) spatializing data and mapping geographical distributions, (c) creating and managing spatial weights matrices, (d) assessing geographical clustering and identifying distributional patterns, and (e) regressing spatial data using spatial regression models. Throughout the tutorial, we alternate between explanatory sections that feature in-depth background information and hands-on sections that use real data to demonstrate the practical implementation of each step in R. The full R code and all data used in this demonstration are available from the OSF project page accompanying this article. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"28 5","pages":"1100-1121"},"PeriodicalIF":7.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000493","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Psychologists have become increasingly interested in the geographical organization of psychological phenomena. Such studies typically seek to identify geographical variation in psychological characteristics and examine the causes and consequences of that variation. Geo-psychological research offers unique advantages, such as a wide variety of easily obtainable behavioral outcomes. However, studies at the geographically aggregate level also come with unique challenges that require psychologists to work with unfamiliar data formats, sources, measures, and statistical problems. The present article aims to present psychologists with a methodological roadmap that equips them with basic analytical techniques for geographical analysis. Across five sections, we provide a step-by-step tutorial and walk readers through a full geo-psychological research project. We provide guidance for (a) choosing an appropriate geographical level and aggregating individual data, (b) spatializing data and mapping geographical distributions, (c) creating and managing spatial weights matrices, (d) assessing geographical clustering and identifying distributional patterns, and (e) regressing spatial data using spatial regression models. Throughout the tutorial, we alternate between explanatory sections that feature in-depth background information and hands-on sections that use real data to demonstrate the practical implementation of each step in R. The full R code and all data used in this demonstration are available from the OSF project page accompanying this article. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.