Minjie Fan, Debashis Paul, Thomas C M Lee, Tomoko Matsuo
{"title":"A MULTI-RESOLUTION MODEL FOR NON-GAUSSIAN RANDOM FIELDS ON A SPHERE WITH APPLICATION TO IONOSPHERIC ELECTROSTATIC POTENTIALS.","authors":"Minjie Fan, Debashis Paul, Thomas C M Lee, Tomoko Matsuo","doi":"10.1214/17-AOAS1104","DOIUrl":null,"url":null,"abstract":"<p><p>Gaussian random fields have been one of the most popular tools for analyzing spatial data. However, many geophysical and environmental processes often display non-Gaussian characteristics. In this paper, we propose a new class of spatial models for non-Gaussian random fields on a sphere based on a multi-resolution analysis. Using a special wavelet frame, named <i>spherical needlets</i>, as building blocks, the proposed model is constructed in the form of a sparse random effects model. The spatial localization of needlets, together with carefully chosen random coefficients, ensure the model to be non-Gaussian and isotropic. The model can also be expanded to include a spatially varying variance profile. The special formulation of the model enables us to develop efficient estimation and prediction procedures, in which an adaptive MCMC algorithm is used. We investigate the accuracy of parameter estimation of the proposed model, and compare its predictive performance with that of two Gaussian models by extensive numerical experiments. Practical utility of the proposed model is demonstrated through an application of the methodology to a data set of high-latitude ionospheric electrostatic potentials, generated from the LFM-MIX model of the magnetosphere-ionosphere system.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"12 1","pages":"459-489"},"PeriodicalIF":1.3000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-AOAS1104","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/17-AOAS1104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7
Abstract
Gaussian random fields have been one of the most popular tools for analyzing spatial data. However, many geophysical and environmental processes often display non-Gaussian characteristics. In this paper, we propose a new class of spatial models for non-Gaussian random fields on a sphere based on a multi-resolution analysis. Using a special wavelet frame, named spherical needlets, as building blocks, the proposed model is constructed in the form of a sparse random effects model. The spatial localization of needlets, together with carefully chosen random coefficients, ensure the model to be non-Gaussian and isotropic. The model can also be expanded to include a spatially varying variance profile. The special formulation of the model enables us to develop efficient estimation and prediction procedures, in which an adaptive MCMC algorithm is used. We investigate the accuracy of parameter estimation of the proposed model, and compare its predictive performance with that of two Gaussian models by extensive numerical experiments. Practical utility of the proposed model is demonstrated through an application of the methodology to a data set of high-latitude ionospheric electrostatic potentials, generated from the LFM-MIX model of the magnetosphere-ionosphere system.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.