Nanodelivery of histamine H3 receptor inverse agonist BF-2649 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury.
Anca D Buzoianu, Aruna Sharma, Dafin F Muresanu, Lianyuan Feng, Hongyun Huang, Lin Chen, Z Ryan Tian, Ala Nozari, José Vicente Lafuente, Per-Ove Sjöqvist, Lars Wiklund, Hari Shanker Sharma
{"title":"Nanodelivery of histamine H3 receptor inverse agonist BF-2649 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury.","authors":"Anca D Buzoianu, Aruna Sharma, Dafin F Muresanu, Lianyuan Feng, Hongyun Huang, Lin Chen, Z Ryan Tian, Ala Nozari, José Vicente Lafuente, Per-Ove Sjöqvist, Lars Wiklund, Hari Shanker Sharma","doi":"10.1016/bs.irn.2023.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO<sub>2</sub> nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.</p>","PeriodicalId":94058,"journal":{"name":"International review of neurobiology","volume":"172 ","pages":"37-77"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.irn.2023.06.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO2 nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.