Riji E, Prashantha Naik, Katheeja Muhseena N, Suparna Laha
{"title":"Apoptosis-Mediated Anticancer Activity of Ganoderma colossus (Agaricomycetes) Extracts in Breast Cancer Cells.","authors":"Riji E, Prashantha Naik, Katheeja Muhseena N, Suparna Laha","doi":"10.1615/IntJMedMushrooms.2023049907","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a leading cause of death worldwide. The current cancer treatments including chemo-, radio- and immuno-therapies pose various side effects, and chances of recurrence that demand for new therapeutics to overcome the issues with existing ones. Mushrooms are considered a potential source of novel therapeutic agents. Ganoderma colossus, a non-edible wood-inhabiting mushroom, is known for certain medical properties. The present study aimed to investigate the possible anticancer activity of methanolic, ethyl acetate, and chloroform extracts of G. colossus, against MCF-7 cells and the mechanism of action(s). MTT assay and gene expression studies were carried out by following the standard protocols. The results demonstrated that among the three solvents, the ethyl acetate crude extract of the mushroom exhibited potential cytotoxic activity on MCF-7 (IC50, 17.2 ± 2.7). The DNA damage induced by the solvent extracts of G. colossus was observed by H2AX foci formation. The TP53 over-expression and flow cytometry analysis indicated that checkpoint activation followed by cell cycle arrest occurred at G1/G0 phase in response to the extract treatment. The dual acridine orange/ethidium bromide (AO/EB) staining revealed apoptosis-associated changes in the cells. Analysis of caspase 3 activations by immunophenotyping confirmed the apoptotic process in the extract-treated cells. Bcl-2 and TP53 mRNA expression data by RT-PCR disclosed the apoptosis pathway. The GC- MS spectral data of the ethyl acetate crude extract of the mushroom indicated the presence of molecules capable of inducing apoptosis. The present study warrants further studies to isolate the molecule(s) from G. colossus which may be a potential drug candidate for breast cancers.</p>","PeriodicalId":94323,"journal":{"name":"International journal of medicinal mushrooms","volume":"25 10","pages":"23-37"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medicinal mushrooms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/IntJMedMushrooms.2023049907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is a leading cause of death worldwide. The current cancer treatments including chemo-, radio- and immuno-therapies pose various side effects, and chances of recurrence that demand for new therapeutics to overcome the issues with existing ones. Mushrooms are considered a potential source of novel therapeutic agents. Ganoderma colossus, a non-edible wood-inhabiting mushroom, is known for certain medical properties. The present study aimed to investigate the possible anticancer activity of methanolic, ethyl acetate, and chloroform extracts of G. colossus, against MCF-7 cells and the mechanism of action(s). MTT assay and gene expression studies were carried out by following the standard protocols. The results demonstrated that among the three solvents, the ethyl acetate crude extract of the mushroom exhibited potential cytotoxic activity on MCF-7 (IC50, 17.2 ± 2.7). The DNA damage induced by the solvent extracts of G. colossus was observed by H2AX foci formation. The TP53 over-expression and flow cytometry analysis indicated that checkpoint activation followed by cell cycle arrest occurred at G1/G0 phase in response to the extract treatment. The dual acridine orange/ethidium bromide (AO/EB) staining revealed apoptosis-associated changes in the cells. Analysis of caspase 3 activations by immunophenotyping confirmed the apoptotic process in the extract-treated cells. Bcl-2 and TP53 mRNA expression data by RT-PCR disclosed the apoptosis pathway. The GC- MS spectral data of the ethyl acetate crude extract of the mushroom indicated the presence of molecules capable of inducing apoptosis. The present study warrants further studies to isolate the molecule(s) from G. colossus which may be a potential drug candidate for breast cancers.