Evaluation of metric and representation learning approaches: Effects of representations driven by relative distance on the performance.

Anthony B Garza, Rolando Garcia, Marc S Halfon, Hani Z Girgis
{"title":"Evaluation of metric and representation learning approaches: Effects of representations driven by relative distance on the performance.","authors":"Anthony B Garza,&nbsp;Rolando Garcia,&nbsp;Marc S Halfon,&nbsp;Hani Z Girgis","doi":"10.1109/imsa58542.2023.10217475","DOIUrl":null,"url":null,"abstract":"<p><p>Several deep neural network architectures have emerged recently for metric learning. We asked which architecture is the most effective in measuring the similarity or dissimilarity among images. To this end, we evaluated six networks on a standard image set. We evaluated variational autoencoders, Siamese networks, triplet networks, and variational auto-encoders combined with Siamese or triplet networks. These networks were compared to a baseline network consisting of multiple separable convolutional layers. Our study revealed the following: (i) the triplet architecture proved the most effective one due to learning a relative distance - not an absolute distance; (ii) combining auto-encoders with networks that learn metrics (e.g., Siamese or triplet networks) is unwarranted; and (iii) an architecture based on separable convolutional layers is a reasonable simple alternative to triplet networks. These results can potentially impact our field by encouraging architects to develop advanced networks that take advantage of separable convolution and relative distance.</p>","PeriodicalId":94364,"journal":{"name":"2023 Intelligent Methods, Systems, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566582/pdf/nihms-1935619.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Intelligent Methods, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/imsa58542.2023.10217475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several deep neural network architectures have emerged recently for metric learning. We asked which architecture is the most effective in measuring the similarity or dissimilarity among images. To this end, we evaluated six networks on a standard image set. We evaluated variational autoencoders, Siamese networks, triplet networks, and variational auto-encoders combined with Siamese or triplet networks. These networks were compared to a baseline network consisting of multiple separable convolutional layers. Our study revealed the following: (i) the triplet architecture proved the most effective one due to learning a relative distance - not an absolute distance; (ii) combining auto-encoders with networks that learn metrics (e.g., Siamese or triplet networks) is unwarranted; and (iii) an architecture based on separable convolutional layers is a reasonable simple alternative to triplet networks. These results can potentially impact our field by encouraging architects to develop advanced networks that take advantage of separable convolution and relative distance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
度量和表征学习方法的评估:相对距离驱动的表征对表现的影响。
最近出现了几种用于度量学习的深度神经网络架构。我们问哪种建筑在衡量图像之间的相似性或不相似性方面最有效。为此,我们在标准图像集上评估了六个网络。我们评估了变分自动编码器、暹罗网络、三元组网络以及与暹罗或三元组网络相结合的变分自动编码。将这些网络与由多个可分离卷积层组成的基线网络进行比较。我们的研究揭示了以下几点:(i)三元组架构被证明是最有效的架构,因为它学习的是相对距离,而不是绝对距离;(ii)将自动编码器与学习度量的网络(例如暹罗或三元组网络)相结合是不必要的;以及(iii)基于可分离卷积层的架构是三元组网络的合理简单的替代方案。这些结果可能会鼓励架构师开发利用可分离卷积和相对距离的先进网络,从而对我们的领域产生潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of metric and representation learning approaches: Effects of representations driven by relative distance on the performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1