Isaac Rubagumya, Allan John Komakech, Isa Kabenge, Nicholas Kiggundu
{"title":"Potential of organic waste to energy and bio-fertilizer production in Sub-Saharan Africa: a review","authors":"Isaac Rubagumya, Allan John Komakech, Isa Kabenge, Nicholas Kiggundu","doi":"10.1007/s42768-022-00131-1","DOIUrl":null,"url":null,"abstract":"<div><p>Many growing cities of Sub-Saharan Africa (SSA) are marred by the inefficient collection, management, disposal and reuse of organic waste. The purpose of this study was to review and compare the energy recovery potential as well as bio-fertilizer perspective, from the organic waste volumes generated in SSA countries. Based on computations made with a literature review, we find that the amount of organic wastes varies across countries translating to differences in the energy and bio-fertilizer production potentials across countries. Organic wastes generated in SSA can potentially generate about 133 million GWh of energy per year. The organic waste to bio-fertilizer production potentials range from 11.08 million tons to 306.26 million tons annually. Ghana has the highest energy and bio-fertilizer potential among the SSA countries with a total per capita of 630 MWh/year and 306.26 million tons, respectively. The challenges and technical considerations for energy and bio-fertilizer approaches in the management of organic waste in SSA have also been discussed. This study is of help to the readers and strategic decision makers in understanding the contribution of bioenergy and bio-fertilizer to achieving sustainable development goals, namely, 7 (Affordable and Clean Energy) and 13 (Climate Action) in SSA.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"5 3","pages":"259 - 267"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-022-00131-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00131-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many growing cities of Sub-Saharan Africa (SSA) are marred by the inefficient collection, management, disposal and reuse of organic waste. The purpose of this study was to review and compare the energy recovery potential as well as bio-fertilizer perspective, from the organic waste volumes generated in SSA countries. Based on computations made with a literature review, we find that the amount of organic wastes varies across countries translating to differences in the energy and bio-fertilizer production potentials across countries. Organic wastes generated in SSA can potentially generate about 133 million GWh of energy per year. The organic waste to bio-fertilizer production potentials range from 11.08 million tons to 306.26 million tons annually. Ghana has the highest energy and bio-fertilizer potential among the SSA countries with a total per capita of 630 MWh/year and 306.26 million tons, respectively. The challenges and technical considerations for energy and bio-fertilizer approaches in the management of organic waste in SSA have also been discussed. This study is of help to the readers and strategic decision makers in understanding the contribution of bioenergy and bio-fertilizer to achieving sustainable development goals, namely, 7 (Affordable and Clean Energy) and 13 (Climate Action) in SSA.