{"title":"Cover Image, Volume 61, Issue 20","authors":"","doi":"10.1002/pol.20230694","DOIUrl":null,"url":null,"abstract":"<p>Pushing the limits of synthetic polymers in terms of stiffness and strength, aromatic polyamide fibers – like Kevlar® – are used for demanding applications. Damage mechanisms and crack propagation are observed <i>in situ</i> and unveil a widespread damage over the entire length of the fiber. These observations make it possible to draw a novel scenario of fracture. To shed light on the crucial role of microfibril cooperativity in fracture toughness, a slight twist is applied to the single fiber to promote tortuosity and frictional contacts between microfibrils. Statistical fracture analysis demonstrated the beneficial impact of such torsion on early failure events. Alba Marcellan created the cover image. DOI: 10.1002/pol.20230400\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 20","pages":"i"},"PeriodicalIF":2.7020,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Pushing the limits of synthetic polymers in terms of stiffness and strength, aromatic polyamide fibers – like Kevlar® – are used for demanding applications. Damage mechanisms and crack propagation are observed in situ and unveil a widespread damage over the entire length of the fiber. These observations make it possible to draw a novel scenario of fracture. To shed light on the crucial role of microfibril cooperativity in fracture toughness, a slight twist is applied to the single fiber to promote tortuosity and frictional contacts between microfibrils. Statistical fracture analysis demonstrated the beneficial impact of such torsion on early failure events. Alba Marcellan created the cover image. DOI: 10.1002/pol.20230400
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...