Occurrence and Trophic Transfer of Polychlorinated Naphthalenes (PCNs) in the Arctic and Antarctic Benthic Marine Food Webs

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2023-10-15 DOI:10.1021/acs.est.3c03982
Cheng Dong, Qinghua Zhang, Siyuan Xiong, Ruiqiang Yang, Zhiguo Pei, Yingming Li* and Guibin Jiang, 
{"title":"Occurrence and Trophic Transfer of Polychlorinated Naphthalenes (PCNs) in the Arctic and Antarctic Benthic Marine Food Webs","authors":"Cheng Dong,&nbsp;Qinghua Zhang,&nbsp;Siyuan Xiong,&nbsp;Ruiqiang Yang,&nbsp;Zhiguo Pei,&nbsp;Yingming Li* and Guibin Jiang,&nbsp;","doi":"10.1021/acs.est.3c03982","DOIUrl":null,"url":null,"abstract":"<p >Information about the occurrence and trophic transfer of polychlorinated naphthalenes (PCNs) in polar ecosystems is vital but scarce. In this study, PCNs were analyzed in benthic marine sediment and several biological species, collected around the Chinese polar scientific research stations in Svalbard in the Arctic and South Shetland Island in Antarctica. Total PCNs in biota ranged from 28 to 249 pg/g of lipid weight (lw) and from 11 to 284 pg/g lw in the Arctic and Antarctic regions, respectively. The concentrations and toxic equivalent (TEQ) of PCNs in polar marine matrices remained relatively low, and the compositions were dominated by lower chlorinated homologues (mono- to trichlorinated naphthalenes). Trophic magnification factors (TMFs) were calculated for congeners, homologues, and total PCNs in the polar benthic marine food webs. Opposite PCN transfer patterns were observed in the Arctic and Antarctic regions, i.e., trophic dilution and trophic magnification, respectively. This is the first comprehensive study of PCN trophic transfer behaviors in remote Arctic and Antarctic marine regions, providing support for further investigations of the biological trophodynamics and ecological risks of PCNs.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.3c03982","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Information about the occurrence and trophic transfer of polychlorinated naphthalenes (PCNs) in polar ecosystems is vital but scarce. In this study, PCNs were analyzed in benthic marine sediment and several biological species, collected around the Chinese polar scientific research stations in Svalbard in the Arctic and South Shetland Island in Antarctica. Total PCNs in biota ranged from 28 to 249 pg/g of lipid weight (lw) and from 11 to 284 pg/g lw in the Arctic and Antarctic regions, respectively. The concentrations and toxic equivalent (TEQ) of PCNs in polar marine matrices remained relatively low, and the compositions were dominated by lower chlorinated homologues (mono- to trichlorinated naphthalenes). Trophic magnification factors (TMFs) were calculated for congeners, homologues, and total PCNs in the polar benthic marine food webs. Opposite PCN transfer patterns were observed in the Arctic and Antarctic regions, i.e., trophic dilution and trophic magnification, respectively. This is the first comprehensive study of PCN trophic transfer behaviors in remote Arctic and Antarctic marine regions, providing support for further investigations of the biological trophodynamics and ecological risks of PCNs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极和南极底栖海洋食物网中多氯萘的发生和营养转移。
关于多氯萘在极地生态系统中的发生和营养转移的信息至关重要,但很少。在这项研究中,分析了在北极斯瓦尔巴群岛和南极南设得兰岛的中国极地科学研究站周围收集的底栖海洋沉积物和几种生物物种中的PCN。在北极和南极地区,生物群中的总PCN分别为28至249 pg/g脂质重量和11至284 pg/g脂质。极地海洋基质中PCN的浓度和毒性当量(TEQ)保持相对较低,其组成以低氯化同系物(单氯至三氯萘)为主。计算了极海底海洋食物网中同源物、同源物和总PCN的营养放大因子(TMF)。在北极和南极地区观察到相反的PCN转移模式,即分别为营养稀释和营养放大。这是首次对北极和南极偏远海域PCN营养转移行为进行全面研究,为进一步研究PCN的生物营养动力学和生态风险提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Impact of Rhizosphere Biostimulation on Cd Transport and Isotope Fractionation in Cd-Tolerant and Hyperaccumulating Plants Based on MC-ICP-MS and NanoSIMS Two-Dimensional Liquid Chromatography Tandem Mass Spectrometry Untangles the Deep Metabolome of Marine Dissolved Organic Matter Exposure to Phthalates and Alternative Plasticizers in Patients with Impaired Kidney Function in Korea: Temporal Trend during 2011–2020 and Its Association with Chronic Kidney Disease Hydrogen Peroxide-Assisted Alkaline Defluorination of the Fumigant and Potent Greenhouse Gas, Sulfuryl Fluoride: Hydrogen Peroxide as a Nucleophilic Reagent Delineating Urbanicity and Rurality: Impact on Environmental Exposure Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1