Jia-Ling Lin, Longxian Chen, Wen-Kai Wu, Xiao-Xiang Guo, Cheng-Hui Yu, Min Xu, Gui-Bin Nie, Jun-Ling Dun, Yan Li, Baofu Xu, Ling-Jian Wang, Xiao-Ya Chen, Wei Gao, Jin-Quan Huang
{"title":"Single-cell RNA sequencing reveals a hierarchical transcriptional regulatory network of terpenoid biosynthesis in cotton secretory glandular cells.","authors":"Jia-Ling Lin, Longxian Chen, Wen-Kai Wu, Xiao-Xiang Guo, Cheng-Hui Yu, Min Xu, Gui-Bin Nie, Jun-Ling Dun, Yan Li, Baofu Xu, Ling-Jian Wang, Xiao-Ya Chen, Wei Gao, Jin-Quan Huang","doi":"10.1016/j.molp.2023.10.008","DOIUrl":null,"url":null,"abstract":"<p><p>Plants can synthesize a wide range of terpenoids in response to various environmental cues. However, the specific regulatory mechanisms governing terpenoid biosynthesis at the cellular level remain largely elusive. In this study, we employed single-cell RNA sequencing to comprehensively characterize the transcriptome profile of cotton leaves and established a hierarchical transcriptional network regulating cell-specific terpenoid production. We observed substantial expression levels of genes associated with the biosynthesis of both volatile terpenes (such as β-caryophyllene and β-myrcene) and non-volatile gossypol-type terpenoids in secretory glandular cells. Moreover, two novel transcription factors, namely GoHSFA4a and GoNAC42, are identified to function downstream of the Gossypium PIGMENT GLAND FORMATION genes. Both transcription factors could directly regulate the expression of terpenoid biosynthetic genes in secretory glandular cells in response to developmental and environmental stimuli. For convenient retrieval of the single-cell RNA sequencing data generated in this study, we developed a user-friendly web server . Our findings not only offer valuable insights into the precise regulation of terpenoid biosynthesis genes in cotton leaves but also provide potential targets for cotton breeding endeavors.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1990-2003"},"PeriodicalIF":17.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2023.10.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants can synthesize a wide range of terpenoids in response to various environmental cues. However, the specific regulatory mechanisms governing terpenoid biosynthesis at the cellular level remain largely elusive. In this study, we employed single-cell RNA sequencing to comprehensively characterize the transcriptome profile of cotton leaves and established a hierarchical transcriptional network regulating cell-specific terpenoid production. We observed substantial expression levels of genes associated with the biosynthesis of both volatile terpenes (such as β-caryophyllene and β-myrcene) and non-volatile gossypol-type terpenoids in secretory glandular cells. Moreover, two novel transcription factors, namely GoHSFA4a and GoNAC42, are identified to function downstream of the Gossypium PIGMENT GLAND FORMATION genes. Both transcription factors could directly regulate the expression of terpenoid biosynthetic genes in secretory glandular cells in response to developmental and environmental stimuli. For convenient retrieval of the single-cell RNA sequencing data generated in this study, we developed a user-friendly web server . Our findings not only offer valuable insights into the precise regulation of terpenoid biosynthesis genes in cotton leaves but also provide potential targets for cotton breeding endeavors.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.