Characterizing affect dynamics with a damped linear oscillator model: Theoretical considerations and recommendations for individual-level applications.
Mar J F Ollero, Eduardo Estrada, Michael D Hunter, Pablo F Cáncer
{"title":"Characterizing affect dynamics with a damped linear oscillator model: Theoretical considerations and recommendations for individual-level applications.","authors":"Mar J F Ollero, Eduardo Estrada, Michael D Hunter, Pablo F Cáncer","doi":"10.1037/met0000615","DOIUrl":null,"url":null,"abstract":"<p><p>People show stable differences in the way their affect fluctuates over time. Within the general framework of dynamical systems, the damped linear oscillator (DLO) model has been proposed as a useful approach to study affect dynamics. The DLO model can be applied to repeated measures provided by a single individual, and the resulting parameters can capture relevant features of the person's affect dynamics. Focusing on negative affect, we provide an accessible interpretation of the DLO model parameters in terms of emotional lability, resilience, and vulnerability. We conducted a Monte Carlo study to test the DLO model performance under different empirically relevant conditions in terms of individual characteristics and sampling scheme. We used state-space models in continuous time. The results show that, under certain conditions, the DLO model is able to accurately and efficiently recover the parameters underlying the affective dynamics of a single individual. We discuss the results and the theoretical and practical implications of using this model, illustrate how to use it for studying psychological phenomena at the individual level, and provide specific recommendations on how to collect data for this purpose. We also provide a tutorial website and computer code in R to implement this approach. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000615","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
People show stable differences in the way their affect fluctuates over time. Within the general framework of dynamical systems, the damped linear oscillator (DLO) model has been proposed as a useful approach to study affect dynamics. The DLO model can be applied to repeated measures provided by a single individual, and the resulting parameters can capture relevant features of the person's affect dynamics. Focusing on negative affect, we provide an accessible interpretation of the DLO model parameters in terms of emotional lability, resilience, and vulnerability. We conducted a Monte Carlo study to test the DLO model performance under different empirically relevant conditions in terms of individual characteristics and sampling scheme. We used state-space models in continuous time. The results show that, under certain conditions, the DLO model is able to accurately and efficiently recover the parameters underlying the affective dynamics of a single individual. We discuss the results and the theoretical and practical implications of using this model, illustrate how to use it for studying psychological phenomena at the individual level, and provide specific recommendations on how to collect data for this purpose. We also provide a tutorial website and computer code in R to implement this approach. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.