Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY SAR and QSAR in Environmental Research Pub Date : 2023-10-01 Epub Date: 2023-11-03 DOI:10.1080/1062936X.2023.2261842
S K Baidya, S Banerjee, B Ghosh, T Jha, N Adhikari
{"title":"Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches.","authors":"S K Baidya, S Banerjee, B Ghosh, T Jha, N Adhikari","doi":"10.1080/1062936X.2023.2261842","DOIUrl":null,"url":null,"abstract":"<p><p>MMP-2 is potentially contributing to several cancer progressions including leukaemias. Therefore, considering MMP-2 as a promising target, novel anticancer compounds may be designed. Here, 32 in-house arylsulfonyl L-(+) glutamines were subjected to various structure-based computational modelling approaches to recognize crucial structural attributes along with the spatial orientation for higher MMP-2 inhibition. Again, the docking-based 2D-QSAR study revealed that the Coulomb energy conferred by Tyr142 and total interaction energy conferred by Ala84 was crucial for MMP-2 inhibition. Importantly, the docking-dependent CoMFA and CoMSIA study revealed the importance of favourable steric, electrostatic, and hydrophobic substituents at the terminal phenyl ring. The MD simulation study revealed a lower fluctuation in the RMSD, RMSF, and Rg values indicating stable binding interactions of MMP-2 and these molecules. Moreover, the residual hydrogen bond and their interaction analysis disclosed crucial amino acid residues responsible for forming potential hydrogen bonding for higher MMP-2 inhibition. The results can effectively aid in the design and discovery of promising small-molecule drug-like MMP-2 inhibitors with greater anticancer potential in the future.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"805-830"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2261842","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MMP-2 is potentially contributing to several cancer progressions including leukaemias. Therefore, considering MMP-2 as a promising target, novel anticancer compounds may be designed. Here, 32 in-house arylsulfonyl L-(+) glutamines were subjected to various structure-based computational modelling approaches to recognize crucial structural attributes along with the spatial orientation for higher MMP-2 inhibition. Again, the docking-based 2D-QSAR study revealed that the Coulomb energy conferred by Tyr142 and total interaction energy conferred by Ala84 was crucial for MMP-2 inhibition. Importantly, the docking-dependent CoMFA and CoMSIA study revealed the importance of favourable steric, electrostatic, and hydrophobic substituents at the terminal phenyl ring. The MD simulation study revealed a lower fluctuation in the RMSD, RMSF, and Rg values indicating stable binding interactions of MMP-2 and these molecules. Moreover, the residual hydrogen bond and their interaction analysis disclosed crucial amino acid residues responsible for forming potential hydrogen bonding for higher MMP-2 inhibition. The results can effectively aid in the design and discovery of promising small-molecule drug-like MMP-2 inhibitors with greater anticancer potential in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于结构的计算建模方法评估内部芳基磺酰基L-(+)谷氨酰胺MMP-2抑制剂作为有前途的抗癌剂的结构见解。
MMP-2可能导致包括白血病在内的多种癌症进展。因此,考虑到MMP-2是一个有前景的靶点,可以设计新的抗癌化合物。在这里,对32种内部芳基磺酰基L-(+)谷氨酰胺进行了各种基于结构的计算建模方法,以识别关键的结构属性以及更高MMP-2抑制的空间方向。同样,基于对接的2D-QSAR研究表明,Tyr142赋予的库仑能和Ala84赋予的总相互作用能对MMP-2的抑制至关重要。重要的是,对接依赖性CoMFA和CoMSIA研究揭示了末端苯环上有利的空间、静电和疏水取代基的重要性。MD模拟研究显示RMSD、RMSF和Rg值的波动较低,表明MMP-2和这些分子的结合相互作用稳定。此外,残余氢键及其相互作用分析揭示了关键的氨基酸残基,其负责形成用于更高MMP-2抑制的潜在氢键。这些结果可以有效地帮助设计和发现未来具有更大抗癌潜力的小分子药物如MMP-2抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
期刊最新文献
Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms. Structure-based drug design of pre-clinical candidate nanopiperine: a direct target for CYP1A1 protein to mitigate hyperglycaemia and associated microbes. Structure-based pharmacophore modelling for ErbB4-kinase inhibition: a systematic computational approach for small molecule drug discovery for breast cancer. A deep learning model based on the BERT pre-trained model to predict the antiproliferative activity of anti-cancer chemical compounds. Discovery of novel pyrrolo[2,3-d]pyrimidine derivatives as anticancer agents: virtual screening and molecular dynamic studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1