S K Baidya, S Banerjee, B Ghosh, T Jha, N Adhikari
{"title":"Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches.","authors":"S K Baidya, S Banerjee, B Ghosh, T Jha, N Adhikari","doi":"10.1080/1062936X.2023.2261842","DOIUrl":null,"url":null,"abstract":"<p><p>MMP-2 is potentially contributing to several cancer progressions including leukaemias. Therefore, considering MMP-2 as a promising target, novel anticancer compounds may be designed. Here, 32 in-house arylsulfonyl L-(+) glutamines were subjected to various structure-based computational modelling approaches to recognize crucial structural attributes along with the spatial orientation for higher MMP-2 inhibition. Again, the docking-based 2D-QSAR study revealed that the Coulomb energy conferred by Tyr142 and total interaction energy conferred by Ala84 was crucial for MMP-2 inhibition. Importantly, the docking-dependent CoMFA and CoMSIA study revealed the importance of favourable steric, electrostatic, and hydrophobic substituents at the terminal phenyl ring. The MD simulation study revealed a lower fluctuation in the RMSD, RMSF, and Rg values indicating stable binding interactions of MMP-2 and these molecules. Moreover, the residual hydrogen bond and their interaction analysis disclosed crucial amino acid residues responsible for forming potential hydrogen bonding for higher MMP-2 inhibition. The results can effectively aid in the design and discovery of promising small-molecule drug-like MMP-2 inhibitors with greater anticancer potential in the future.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"805-830"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2261842","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
MMP-2 is potentially contributing to several cancer progressions including leukaemias. Therefore, considering MMP-2 as a promising target, novel anticancer compounds may be designed. Here, 32 in-house arylsulfonyl L-(+) glutamines were subjected to various structure-based computational modelling approaches to recognize crucial structural attributes along with the spatial orientation for higher MMP-2 inhibition. Again, the docking-based 2D-QSAR study revealed that the Coulomb energy conferred by Tyr142 and total interaction energy conferred by Ala84 was crucial for MMP-2 inhibition. Importantly, the docking-dependent CoMFA and CoMSIA study revealed the importance of favourable steric, electrostatic, and hydrophobic substituents at the terminal phenyl ring. The MD simulation study revealed a lower fluctuation in the RMSD, RMSF, and Rg values indicating stable binding interactions of MMP-2 and these molecules. Moreover, the residual hydrogen bond and their interaction analysis disclosed crucial amino acid residues responsible for forming potential hydrogen bonding for higher MMP-2 inhibition. The results can effectively aid in the design and discovery of promising small-molecule drug-like MMP-2 inhibitors with greater anticancer potential in the future.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.