Developing a carbon footprint model and environmental impact analysis of municipal solid waste transportation: A case study of Tehran, Iran.

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of the Air & Waste Management Association Pub Date : 2023-12-01 Epub Date: 2023-11-27 DOI:10.1080/10962247.2023.2271424
Kiana Rouhi, Majid Shafiepour Motlagh, Fatemeh Dalir
{"title":"Developing a carbon footprint model and environmental impact analysis of municipal solid waste transportation: A case study of Tehran, Iran.","authors":"Kiana Rouhi, Majid Shafiepour Motlagh, Fatemeh Dalir","doi":"10.1080/10962247.2023.2271424","DOIUrl":null,"url":null,"abstract":"<p><p>The greenhouse gas emitted due to transportation is the third greatest emitter globally, and its impact has become a threat to the environment, public health, and economic development. Waste transportation is excluded in studies of waste management despite its significant environmental impacts such as global warming and human toxicity. The objective of this study is to develop a quantification model to estimate the carbon footprint of waste transportation and environmental impact assessments in three categories applied in Tehran using IPCC guidelines. In Tehran, light and heavy vehicles ran on diesel fuel. Data on fuel and waste characteristics were provided by Tehran's department of transportation and municipality, respectively. In this study, transport-related emissions are 8.47 k tonCO2eq/y, and the carbon footprint of waste transportation is 93.57 g of CO2 eq per ton of waste transported (t.km), which is relevant to three main parameters: the amount of waste transported annually, the freight shipped from the temporary station to the disposal landfill site, and fossil fuels consumed. Also, an environmental impact assessment in three categories - human health (global warming, abiotic depletion, and ozone layer depletion), resources (fossil fuels), and ecosystem quality (acidification and eutrophication) - using SimaPro, a Life Cycle Assessment (LCA) tool is presented. Global warming (3.49 kg CO<sub>2</sub> eq/t MSW), human toxicity (0.95 kg 1,4-DB eq/t MSW), and freshwater aquatic eco-toxicity (0.04 kg 1,4-DB eq/t MSW) have the greatest impact among categories. Sensitivity analysis of the effective parameters allows us to conclude one of the potential implications of this study would be the introduction of natural gas or biogas-based trucks replacing diesel fuel vehicles to improve air quality and mitigate the greenhouse gas emission.<i>Implications</i>: This paper addresses the significant issue of global warming, particularly in Iran, a developing country that ranks among the top contributors to greenhouse gas emissions. The study emphasizes the importance of evaluating emissions across various sectors such as electricity, waste, etc., Specifically, in this paper we focus on developing a model to quantify the environmental impact resulting from the combustion of fossil fuels in vehicles, focus on the metropolitan city of Tehran as a case study. By examining the waste transportation process, we aim to provide decision-makers with effective strategies to mitigate the environmental consequences. In this paper, we develop a simple quantification term of Carbon Footprint to calculate total greenhouse gas emission of waste transportation process. Carbon Footprint is a fraction which, its numerator is total greenhouse gas emission and its denominator is total waste transported in traveled distance. Effective parameters have been investigated and based on parameters and emission factors taken out of IPPC, the carbon footprint model have been developed. The total greenhouse gas emission of this study and the carbon footprint has estimated at 8.47 k tonCO2eq/y and 93.57 g CO2eq/t.km respectively. Furthermore, the paper explores additional environmental impacts beyond global warming, including abiotic depletion, ozone layer depletion, acidification, eutrophication, human toxicity, photochemical oxidation, and freshwater aquatic eco-toxicity. Using SimaPro software these eight impact categories have been estimated. in this study we identify fossil fuel consumption, traveled distance, and mass transported are the primary parameters influencing greenhouse gas emissions and the carbon footprint. To reduce emissions in the waste transportation system, we suggest promoting renewable biofuels, highlighting Iran as a suitable candidate due to its high percentage of biodegradable material in municipal solid waste. Additionally, the study assesses nonrenewable energy and mineral extraction using the IMPACT 2002+ V2.15/IMPACT 2002+ method, revealing that global warming (100 years), human toxicity (100 years), freshwater aquatic eco-toxicity, nonrenewable energy, and mineral extraction have the most significant impacts on the municipal solid waste transportation system. Overall, this research underscores the need for quantifying environmental impacts and recommends strategies to mitigate them in waste transportation processes, particularly in developing countries like Iran.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"890-901"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Air & Waste Management Association","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10962247.2023.2271424","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The greenhouse gas emitted due to transportation is the third greatest emitter globally, and its impact has become a threat to the environment, public health, and economic development. Waste transportation is excluded in studies of waste management despite its significant environmental impacts such as global warming and human toxicity. The objective of this study is to develop a quantification model to estimate the carbon footprint of waste transportation and environmental impact assessments in three categories applied in Tehran using IPCC guidelines. In Tehran, light and heavy vehicles ran on diesel fuel. Data on fuel and waste characteristics were provided by Tehran's department of transportation and municipality, respectively. In this study, transport-related emissions are 8.47 k tonCO2eq/y, and the carbon footprint of waste transportation is 93.57 g of CO2 eq per ton of waste transported (t.km), which is relevant to three main parameters: the amount of waste transported annually, the freight shipped from the temporary station to the disposal landfill site, and fossil fuels consumed. Also, an environmental impact assessment in three categories - human health (global warming, abiotic depletion, and ozone layer depletion), resources (fossil fuels), and ecosystem quality (acidification and eutrophication) - using SimaPro, a Life Cycle Assessment (LCA) tool is presented. Global warming (3.49 kg CO2 eq/t MSW), human toxicity (0.95 kg 1,4-DB eq/t MSW), and freshwater aquatic eco-toxicity (0.04 kg 1,4-DB eq/t MSW) have the greatest impact among categories. Sensitivity analysis of the effective parameters allows us to conclude one of the potential implications of this study would be the introduction of natural gas or biogas-based trucks replacing diesel fuel vehicles to improve air quality and mitigate the greenhouse gas emission.Implications: This paper addresses the significant issue of global warming, particularly in Iran, a developing country that ranks among the top contributors to greenhouse gas emissions. The study emphasizes the importance of evaluating emissions across various sectors such as electricity, waste, etc., Specifically, in this paper we focus on developing a model to quantify the environmental impact resulting from the combustion of fossil fuels in vehicles, focus on the metropolitan city of Tehran as a case study. By examining the waste transportation process, we aim to provide decision-makers with effective strategies to mitigate the environmental consequences. In this paper, we develop a simple quantification term of Carbon Footprint to calculate total greenhouse gas emission of waste transportation process. Carbon Footprint is a fraction which, its numerator is total greenhouse gas emission and its denominator is total waste transported in traveled distance. Effective parameters have been investigated and based on parameters and emission factors taken out of IPPC, the carbon footprint model have been developed. The total greenhouse gas emission of this study and the carbon footprint has estimated at 8.47 k tonCO2eq/y and 93.57 g CO2eq/t.km respectively. Furthermore, the paper explores additional environmental impacts beyond global warming, including abiotic depletion, ozone layer depletion, acidification, eutrophication, human toxicity, photochemical oxidation, and freshwater aquatic eco-toxicity. Using SimaPro software these eight impact categories have been estimated. in this study we identify fossil fuel consumption, traveled distance, and mass transported are the primary parameters influencing greenhouse gas emissions and the carbon footprint. To reduce emissions in the waste transportation system, we suggest promoting renewable biofuels, highlighting Iran as a suitable candidate due to its high percentage of biodegradable material in municipal solid waste. Additionally, the study assesses nonrenewable energy and mineral extraction using the IMPACT 2002+ V2.15/IMPACT 2002+ method, revealing that global warming (100 years), human toxicity (100 years), freshwater aquatic eco-toxicity, nonrenewable energy, and mineral extraction have the most significant impacts on the municipal solid waste transportation system. Overall, this research underscores the need for quantifying environmental impacts and recommends strategies to mitigate them in waste transportation processes, particularly in developing countries like Iran.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发城市固体废物运输的碳足迹模型和环境影响分析:以伊朗德黑兰为例。
交通运输排放的温室气体是全球第三大排放国,其影响已对环境、公共健康和经济发展构成威胁。废物运输在废物管理研究中被排除在外,尽管它对环境产生了重大影响,如全球变暖和人类毒性。本研究的目的是开发一个量化模型,以估计德黑兰使用IPCC指南进行的三类废物运输和环境影响评估的碳足迹。在德黑兰,轻型和重型车辆都使用柴油。关于燃料和废物特性的数据分别由德黑兰交通部和市政当局提供。在这项研究中,与运输相关的排放量为8.47千吨二氧化碳当量/年,废物运输的碳足迹为93.57 每吨运输废物的二氧化碳当量g(t.km),与三个主要参数有关:每年运输的废物量、从临时站运往处置填埋场的运费以及消耗的化石燃料。此外,还介绍了使用生命周期评估(LCA)工具SimaPro进行的三类环境影响评估,即人类健康(全球变暖、非生物消耗和臭氧层消耗)、资源(化石燃料)和生态系统质量(酸化和富营养化)。全球变暖(3.49 kg CO2 eq/t MSW),人体毒性(0.95 kg 1,4-DB eq/t MSW)和淡水水生生态毒性(0.04 kg 1,4-DB eq/t MSW)在类别中具有最大的影响。通过对有效参数的敏感性分析,我们可以得出结论,这项研究的潜在影响之一是引入天然气或沼气卡车取代柴油车,以改善空气质量并减少温室气体排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Air & Waste Management Association
Journal of the Air & Waste Management Association ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
5.00
自引率
3.70%
发文量
95
审稿时长
3 months
期刊介绍: The Journal of the Air & Waste Management Association (J&AWMA) is one of the oldest continuously published, peer-reviewed, technical environmental journals in the world. First published in 1951 under the name Air Repair, J&AWMA is intended to serve those occupationally involved in air pollution control and waste management through the publication of timely and reliable information.
期刊最新文献
From Conventional Approaches to Circular Systems: Evolution of Waste Management in Mega-Sporting Events. Absorption photometry of patterned deposits on IMPROVE PTFE filters. The most important technologies and highlights for biogas production worldwide. Extraction of agricultural plastic greenhouses based on a U-Net convolutional neural network coupled with edge expansion and loss function improvement. Reaction kinetics and isotherms of commercial activated carbon in variable pressure adsorption of high compound VOCs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1