Mohammed A Eid, Gehan N Momeh, Abd El-Raheem R El-Shanshoury, Nanis G Allam, Reda M Gaafar
{"title":"Comprehensive analysis of soybean cultivars' response to SMV infection: genotypic association, molecular characterization, and defense gene expressions.","authors":"Mohammed A Eid, Gehan N Momeh, Abd El-Raheem R El-Shanshoury, Nanis G Allam, Reda M Gaafar","doi":"10.1186/s43141-023-00558-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Soybean mosaic virus (SMV) is a devastating disease that threatens soybean plants worldwide. The different soybean genotypes displayed different responses to SMV strains. This study aimed to investigate the response of different selected soybean cultivars to SMV infection in Egypt based on their specific genetic makeup.</p><p><strong>Result: </strong>The symptoms of SMV infection and the viral concentration were evaluated in eight soybean cultivars (Giza 21, Giza 22, Giza 35, Giza 82, Giza 111, Crawford, H4L4, and PI416937) using ELISA assay. The results indicated that Giza 21 and Giza 35 were moderately tolerant to SMV infection, while Giza 82 was the least tolerant cultivar. Giza 22, Giza 111, and PI416937 were less tolerant; however, H4L4 and Crawford were identified as the most tolerant cultivars against SMV infection. The chi-square analysis showed a significant association between the different selected cultivars and their response against SMV infection. The PCR test showed the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci, and the absence of the RSV4 locus gene. The expression analysis of the selected defense genes (EDS1, PAD4, EDR1, ERF1, and JAR) showed variations in the fold changes between infected and non-infected soybean cultivars, suggesting that these genes might play a crucial role in this pathosystem. Additionally, there was a strong positive association between the expression levels of EDR1 and ERF1.</p><p><strong>Conclusion: </strong>The study found the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci in selected soybean cultivars, but not RSV4. The analysis of gene expression indicated that certain defense genes may play a vital role in the pathosystem. This research is the first of its kind in Egypt to genotype soybean cultivars regarding different RSV loci. The findings could be beneficial for further research on understanding the molecular mechanisms involved in SMV infection and its management.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":"21 1","pages":"102"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00558-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Soybean mosaic virus (SMV) is a devastating disease that threatens soybean plants worldwide. The different soybean genotypes displayed different responses to SMV strains. This study aimed to investigate the response of different selected soybean cultivars to SMV infection in Egypt based on their specific genetic makeup.
Result: The symptoms of SMV infection and the viral concentration were evaluated in eight soybean cultivars (Giza 21, Giza 22, Giza 35, Giza 82, Giza 111, Crawford, H4L4, and PI416937) using ELISA assay. The results indicated that Giza 21 and Giza 35 were moderately tolerant to SMV infection, while Giza 82 was the least tolerant cultivar. Giza 22, Giza 111, and PI416937 were less tolerant; however, H4L4 and Crawford were identified as the most tolerant cultivars against SMV infection. The chi-square analysis showed a significant association between the different selected cultivars and their response against SMV infection. The PCR test showed the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci, and the absence of the RSV4 locus gene. The expression analysis of the selected defense genes (EDS1, PAD4, EDR1, ERF1, and JAR) showed variations in the fold changes between infected and non-infected soybean cultivars, suggesting that these genes might play a crucial role in this pathosystem. Additionally, there was a strong positive association between the expression levels of EDR1 and ERF1.
Conclusion: The study found the presence of RSV1 (3gG2), RSV1 (5gG3), and RSV3 loci in selected soybean cultivars, but not RSV4. The analysis of gene expression indicated that certain defense genes may play a vital role in the pathosystem. This research is the first of its kind in Egypt to genotype soybean cultivars regarding different RSV loci. The findings could be beneficial for further research on understanding the molecular mechanisms involved in SMV infection and its management.