Criticality Search of an Accelerator Driven System Using the ANET Code

Xenofontos Thalia, Savva Panayiota, M. Varvayanni, J. Maillard, J. Silva, N. Catsaros
{"title":"Criticality Search of an Accelerator Driven System Using the ANET Code","authors":"Xenofontos Thalia, Savva Panayiota, M. Varvayanni, J. Maillard, J. Silva, N. Catsaros","doi":"10.4236/WJNST.2021.111004","DOIUrl":null,"url":null,"abstract":"One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear systems, the specification of their rods’ position through the utilization of neutronics codes, deterministic or stochastic, is considered nowadays trivial. However, innovative nuclear reactor concepts such as the Accelerator Driven Systems require sophisticated simulation capabilities of the stochastic neutronics codes since they combine high energy physics, for the spallation-produced neutrons, with classical nuclear technology. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic neutronics code, able to cover the broad neutron energy spectrum involved in ADS systems and therefore capable of simulating conventional and hybrid nuclear reactors and calculating important reactor parameters. In this work, ANETS’s reliability to calculate the effective multiplication factor for three core configurations containing control rods of the Kyoto University Critical Assembly, an operating ADS, is examined. The ANET results successfully compare with results produced by well-established stochastic codes such as MCNP6.1.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"9 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"核科学与技术国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/WJNST.2021.111004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear systems, the specification of their rods’ position through the utilization of neutronics codes, deterministic or stochastic, is considered nowadays trivial. However, innovative nuclear reactor concepts such as the Accelerator Driven Systems require sophisticated simulation capabilities of the stochastic neutronics codes since they combine high energy physics, for the spallation-produced neutrons, with classical nuclear technology. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic neutronics code, able to cover the broad neutron energy spectrum involved in ADS systems and therefore capable of simulating conventional and hybrid nuclear reactors and calculating important reactor parameters. In this work, ANETS’s reliability to calculate the effective multiplication factor for three core configurations containing control rods of the Kyoto University Critical Assembly, an operating ADS, is examined. The ANET results successfully compare with results produced by well-established stochastic codes such as MCNP6.1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用ANET程序搜索加速器驱动系统的临界性
在核反应堆的设计和实际运行过程中,最重要的安全参数之一是调整控制棒以达到临界状态。关于常规核系统,通过使用确定性或随机性的中子学代码来指定其棒的位置,如今被认为是微不足道的。然而,加速器驱动系统等创新核反应堆概念需要复杂的随机中子学代码模拟能力,因为它们将散裂产生的中子的高能物理与经典核技术相结合。ANET(Advanced Neutronics with Evolution and Thermal hydraulic feedback)是一个正在开发的随机中子学代码,能够覆盖ADS系统中涉及的宽中子能谱,因此能够模拟常规和混合核反应堆并计算重要的反应堆参数。在这项工作中,检验了ANETS计算包含京都大学临界组件控制棒的三个核心配置的有效倍增因子的可靠性。ANET的结果成功地与诸如MCNP6.1之类的公认随机代码产生的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
198
期刊最新文献
System Variables Design of Safety Analysis for Fast Reactors Numerical Analysis of Heating Technique in Corium Melt Pool Convection Flow Field & Thermal Interaction in a Volumetrically Heated Molten Pool Feasibility to Convert the NuScale SMR from UO2 to a Mixed (U, Th)O2 Core: A Parametric Study of Fuel Element—Seed-Blanket Concept Cause Analysis for Wall Thinning of Small-Bore Piping in Nuclear Power Plant by ToSPACE, FLUENT and Theoretical Evaluation The Systematics Study of (n, p) Reaction Cross-Sections at 14.7 MeV Neutron Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1