{"title":"Conservation, impermeability and potential vorticity in relativistic magnetohydrodynamics","authors":"S. Fletcher","doi":"10.1088/2399-6528/aca1f4","DOIUrl":null,"url":null,"abstract":"The conservation and impermeability conditions are reformulated utilising differential forms and generalised to spacetime. The thermodynamic and electromagnetic potential vorticity scalar fields are defined for relativistic magnetohydrodynamics and their evolution equations are derived.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"6 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/aca1f4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The conservation and impermeability conditions are reformulated utilising differential forms and generalised to spacetime. The thermodynamic and electromagnetic potential vorticity scalar fields are defined for relativistic magnetohydrodynamics and their evolution equations are derived.