Rassf2 overexpression mediated by AAV promotes the supporting cell-to-hair cell transformation in the cochlea

Q1 Medicine Engineered regeneration Pub Date : 2023-09-01 DOI:10.1016/j.engreg.2023.04.003
Liyan Zhang , Jieyu Qi , Yuan Fang , Fangzhi Tan , Yinyi Zhou , Ziyu Zhang , Qiuhan Sun , Nianci Li , Yideng Huang , Jingwu Sun , Renjie Chai
{"title":"Rassf2 overexpression mediated by AAV promotes the supporting cell-to-hair cell transformation in the cochlea","authors":"Liyan Zhang ,&nbsp;Jieyu Qi ,&nbsp;Yuan Fang ,&nbsp;Fangzhi Tan ,&nbsp;Yinyi Zhou ,&nbsp;Ziyu Zhang ,&nbsp;Qiuhan Sun ,&nbsp;Nianci Li ,&nbsp;Yideng Huang ,&nbsp;Jingwu Sun ,&nbsp;Renjie Chai","doi":"10.1016/j.engreg.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Sensory hair cells are responsible for detecting and transmitting sound in the inner ear, and damage to HCs leads to hearing loss. HCs do not regenerate spontaneously in adult mammals, which makes the hearing loss permanent. However, hair cells and supporting cells have the same precursors in the inner ear, and in newborn mice, the adjacent SCs can be activated by gene manipulation to differentiate into newly regenerated hair cells. Here, we demonstrate the role of the Ras association domain family member 2 (Rassf2) in supporting cell to hair cell trans-differentiation in the inner ear. Using the AAV vector (AAV-ie) to upregulate Rassf2 expression promoted supporting cell division and hair cell production in cultured cochlear organoids. Also, AAV-Rassf2 enhanced the regenerative ability of Lgr5<sup>+</sup> SCs in the postnatal cochlea without impairing hearing, and this might due to the modulation of the Wnt, Hedgehog and Notch signaling pathways. Furthermore, AAV-Rassf2 enhances cochlear supporting cell division and hair cell production in the neomycin injury model. In summary, our results suggest that Rassf2 is a key component in HC regenerative repair, and gene modulation mediated by adeno-associated virus may be a promising gene therapy for hearing repair.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"4 3","pages":"Pages 304-315"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138123000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Sensory hair cells are responsible for detecting and transmitting sound in the inner ear, and damage to HCs leads to hearing loss. HCs do not regenerate spontaneously in adult mammals, which makes the hearing loss permanent. However, hair cells and supporting cells have the same precursors in the inner ear, and in newborn mice, the adjacent SCs can be activated by gene manipulation to differentiate into newly regenerated hair cells. Here, we demonstrate the role of the Ras association domain family member 2 (Rassf2) in supporting cell to hair cell trans-differentiation in the inner ear. Using the AAV vector (AAV-ie) to upregulate Rassf2 expression promoted supporting cell division and hair cell production in cultured cochlear organoids. Also, AAV-Rassf2 enhanced the regenerative ability of Lgr5+ SCs in the postnatal cochlea without impairing hearing, and this might due to the modulation of the Wnt, Hedgehog and Notch signaling pathways. Furthermore, AAV-Rassf2 enhances cochlear supporting cell division and hair cell production in the neomycin injury model. In summary, our results suggest that Rassf2 is a key component in HC regenerative repair, and gene modulation mediated by adeno-associated virus may be a promising gene therapy for hearing repair.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AAV介导的Rassf2过表达促进耳蜗支持细胞向毛细胞转化
感觉毛细胞负责探测和传递内耳的声音,对毛细胞的损害会导致听力丧失。成年哺乳动物的hc不能自发再生,这使得听力损失成为永久性的。然而,毛细胞和支持细胞在内耳中具有相同的前体,并且在新生小鼠中,相邻的SCs可以通过基因操作激活,分化为新再生的毛细胞。在这里,我们证明了Ras关联结构域家族成员2 (Rassf2)在支持内耳细胞向毛细胞的转分化中的作用。利用AAV载体(AAV-ie)上调Rassf2表达可促进人工耳蜗类器官的支持细胞分裂和毛细胞生成。此外,AAV-Rassf2在不损害听力的情况下增强了出生后耳蜗Lgr5+ SCs的再生能力,这可能与Wnt、Hedgehog和Notch信号通路的调节有关。此外,AAV-Rassf2在新霉素损伤模型中促进耳蜗支持细胞分裂和毛细胞生成。综上所述,我们的研究结果表明Rassf2是HC再生修复的关键成分,由腺相关病毒介导的基因调节可能是一种很有前景的听力修复基因治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
期刊最新文献
Asymmetric porous composite hydrogel patch for microenvironment-adapted repair of contaminated abdominal wall defects Novel injectable composite incorporating denosumab promotes bone regeneration via bone homeostasis regulation Bone improvement in osteoporotic rabbits using CoCrMo implants Polyphenol-based photothermal nanoparticles with sprayable capability for self-regulation of microenvironment to accelerate diabetic wound healing Corrigendum to “The Artificial Disc Nucleus and Other Strategies for Replacement of the Nucleus Pulposus: Past, Present and Future Designs for an Emerging Surgical Solution” [Engineered Regeneration 5(2024), 269-281]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1